Metamath Proof Explorer


Theorem minusmodnep2tmod

Description: A nonnegative integer minus a positive integer 1 or 2 is not itself plus 2 times the positive integer modulo 5. (Contributed by AV, 8-Sep-2025)

Ref Expression
Assertion minusmodnep2tmod A B 1 ..^ 3 A B mod 5 A + 2 B mod 5

Proof

Step Hyp Ref Expression
1 elpri B 1 2 B = 1 B = 2
2 5ndvds3 ¬ 5 3
3 oveq2 B = 1 3 B = 3 1
4 3t1e3 3 1 = 3
5 3 4 eqtrdi B = 1 3 B = 3
6 5 breq2d B = 1 5 3 B 5 3
7 2 6 mtbiri B = 1 ¬ 5 3 B
8 5ndvds6 ¬ 5 6
9 oveq2 B = 2 3 B = 3 2
10 3t2e6 3 2 = 6
11 9 10 eqtrdi B = 2 3 B = 6
12 11 breq2d B = 2 5 3 B 5 6
13 8 12 mtbiri B = 2 ¬ 5 3 B
14 7 13 jaoi B = 1 B = 2 ¬ 5 3 B
15 1 14 syl B 1 2 ¬ 5 3 B
16 fzo13pr 1 ..^ 3 = 1 2
17 15 16 eleq2s B 1 ..^ 3 ¬ 5 3 B
18 17 adantl A B 1 ..^ 3 ¬ 5 3 B
19 5nn 5
20 19 a1i A B 1 ..^ 3 5
21 simpl A B 1 ..^ 3 A
22 2z 2
23 22 a1i A B 1 ..^ 3 2
24 elfzoelz B 1 ..^ 3 B
25 24 adantl A B 1 ..^ 3 B
26 23 25 zmulcld A B 1 ..^ 3 2 B
27 submodaddmod 5 A 2 B B A + 2 B mod 5 = A B mod 5 A + 2 B + B mod 5 = A mod 5
28 20 21 26 25 27 syl13anc A B 1 ..^ 3 A + 2 B mod 5 = A B mod 5 A + 2 B + B mod 5 = A mod 5
29 2cnd B 1 ..^ 3 2
30 24 zcnd B 1 ..^ 3 B
31 29 30 adddirp1d B 1 ..^ 3 2 + 1 B = 2 B + B
32 31 eqcomd B 1 ..^ 3 2 B + B = 2 + 1 B
33 32 adantl A B 1 ..^ 3 2 B + B = 2 + 1 B
34 2p1e3 2 + 1 = 3
35 34 oveq1i 2 + 1 B = 3 B
36 33 35 eqtrdi A B 1 ..^ 3 2 B + B = 3 B
37 36 oveq2d A B 1 ..^ 3 A + 2 B + B = A + 3 B
38 37 oveq1d A B 1 ..^ 3 A + 2 B + B mod 5 = A + 3 B mod 5
39 38 eqeq1d A B 1 ..^ 3 A + 2 B + B mod 5 = A mod 5 A + 3 B mod 5 = A mod 5
40 28 39 bitrd A B 1 ..^ 3 A + 2 B mod 5 = A B mod 5 A + 3 B mod 5 = A mod 5
41 eqcom A B mod 5 = A + 2 B mod 5 A + 2 B mod 5 = A B mod 5
42 41 a1i A B 1 ..^ 3 A B mod 5 = A + 2 B mod 5 A + 2 B mod 5 = A B mod 5
43 3z 3
44 43 a1i A B 1 ..^ 3 3
45 addmulmodb 5 A 3 B 5 3 B A + 3 B mod 5 = A mod 5
46 20 21 44 25 45 syl13anc A B 1 ..^ 3 5 3 B A + 3 B mod 5 = A mod 5
47 40 42 46 3bitr4d A B 1 ..^ 3 A B mod 5 = A + 2 B mod 5 5 3 B
48 18 47 mtbird A B 1 ..^ 3 ¬ A B mod 5 = A + 2 B mod 5
49 48 neqned A B 1 ..^ 3 A B mod 5 A + 2 B mod 5