Metamath Proof Explorer


Theorem mnugrud

Description: Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnugrud.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnugrud.2 φUM
Assertion mnugrud φUUniv

Proof

Step Hyp Ref Expression
1 mnugrud.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnugrud.2 φUM
3 1 2 mnutrd φTrU
4 2 adantr φxUUM
5 simpr φxUxU
6 1 4 5 mnupwd φxU𝒫xU
7 2 ad2antrr φxUyUUM
8 5 adantr φxUyUxU
9 simpr φxUyUyU
10 1 7 8 9 mnuprd φxUyUxyU
11 10 ralrimiva φxUyUxyU
12 2 ad2antrr φxUyUxUM
13 5 adantr φxUyUxxU
14 elmapi yUxy:xU
15 14 adantl φxUyUxy:xU
16 1 12 13 15 mnurnd φxUyUxranyU
17 1 12 16 mnuunid φxUyUxranyU
18 17 ralrimiva φxUyUxranyU
19 6 11 18 3jca φxU𝒫xUyUxyUyUxranyU
20 19 ralrimiva φxU𝒫xUyUxyUyUxranyU
21 elgrug UMUUnivTrUxU𝒫xUyUxyUyUxranyU
22 2 21 syl φUUnivTrUxU𝒫xUyUxyUyUxranyU
23 3 20 22 mpbir2and φUUniv