Description: Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnugrud.1 | |
|
mnugrud.2 | |
||
Assertion | mnugrud | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnugrud.1 | |
|
2 | mnugrud.2 | |
|
3 | 1 2 | mnutrd | |
4 | 2 | adantr | |
5 | simpr | |
|
6 | 1 4 5 | mnupwd | |
7 | 2 | ad2antrr | |
8 | 5 | adantr | |
9 | simpr | |
|
10 | 1 7 8 9 | mnuprd | |
11 | 10 | ralrimiva | |
12 | 2 | ad2antrr | |
13 | 5 | adantr | |
14 | elmapi | |
|
15 | 14 | adantl | |
16 | 1 12 13 15 | mnurnd | |
17 | 1 12 16 | mnuunid | |
18 | 17 | ralrimiva | |
19 | 6 11 18 | 3jca | |
20 | 19 | ralrimiva | |
21 | elgrug | |
|
22 | 2 21 | syl | |
23 | 3 20 22 | mpbir2and | |