Metamath Proof Explorer


Theorem mnuprdlem4

Description: Lemma for mnuprd . General case. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprdlem4.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuprdlem4.2 F=AB
mnuprdlem4.3 φUM
mnuprdlem4.4 φAU
mnuprdlem4.5 φBU
mnuprdlem4.6 φ¬A=
Assertion mnuprdlem4 φABU

Proof

Step Hyp Ref Expression
1 mnuprdlem4.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuprdlem4.2 F=AB
3 mnuprdlem4.3 φUM
4 mnuprdlem4.4 φAU
5 mnuprdlem4.5 φBU
6 mnuprdlem4.6 φ¬A=
7 1 3 4 mnu0eld φU
8 1 3 7 mnusnd φU
9 0ss
10 ssid
11 1 3 8 9 10 mnuprss2d φU
12 1 3 4 mnusnd φAU
13 0ss A
14 ssid AA
15 1 3 12 13 14 mnuprss2d φAU
16 0ss B
17 ssid BB
18 1 3 5 16 17 mnuprss2d φBU
19 snsspr1 B
20 snsspr2 BB
21 1 3 18 19 20 mnuprss2d φBU
22 15 21 prssd φABU
23 2 22 eqsstrid φFU
24 1 3 11 23 mnuop3d φwUivFivuFiuuw
25 simprl φwUivFivuFiuuwwU
26 eleq2w a=wAaAw
27 eleq2w a=wBaBw
28 26 27 anbi12d a=wAaBaAwBw
29 28 adantl φwUivFivuFiuuwa=wAaBaAwBw
30 4 adantr φwUivFivuFiuuwAU
31 5 adantr φwUivFivuFiuuwBU
32 nfv iφ
33 nfv iwU
34 nfra1 iivFivuFiuuw
35 33 34 nfan iwUivFivuFiuuw
36 32 35 nfan iφwUivFivuFiuuw
37 2 36 mnuprdlem3 φwUivFivuFiuuwivFiv
38 ralim ivFivuFiuuwivFiviuFiuuw
39 38 ad2antll φwUivFivuFiuuwivFiviuFiuuw
40 37 39 mpd φwUivFivuFiuuwiuFiuuw
41 2 30 31 40 mnuprdlem1 φwUivFivuFiuuwAw
42 6 adantr φwUivFivuFiuuw¬A=
43 2 31 42 40 mnuprdlem2 φwUivFivuFiuuwBw
44 41 43 jca φwUivFivuFiuuwAwBw
45 25 29 44 rspcedvd φwUivFivuFiuuwaUAaBa
46 24 45 rexlimddv φaUAaBa
47 3 adantr φaUAaBaUM
48 simprl φaUAaBaaU
49 simprrl φaUAaBaAa
50 simprrr φaUAaBaBa
51 49 50 prssd φaUAaBaABa
52 1 47 48 51 mnussd φaUAaBaABU
53 46 52 rexlimddv φABU