Description: Lemma for mnuprd . General case. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnuprdlem4.1 | |
|
mnuprdlem4.2 | |
||
mnuprdlem4.3 | |
||
mnuprdlem4.4 | |
||
mnuprdlem4.5 | |
||
mnuprdlem4.6 | |
||
Assertion | mnuprdlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuprdlem4.1 | |
|
2 | mnuprdlem4.2 | |
|
3 | mnuprdlem4.3 | |
|
4 | mnuprdlem4.4 | |
|
5 | mnuprdlem4.5 | |
|
6 | mnuprdlem4.6 | |
|
7 | 1 3 4 | mnu0eld | |
8 | 1 3 7 | mnusnd | |
9 | 0ss | |
|
10 | ssid | |
|
11 | 1 3 8 9 10 | mnuprss2d | |
12 | 1 3 4 | mnusnd | |
13 | 0ss | |
|
14 | ssid | |
|
15 | 1 3 12 13 14 | mnuprss2d | |
16 | 0ss | |
|
17 | ssid | |
|
18 | 1 3 5 16 17 | mnuprss2d | |
19 | snsspr1 | |
|
20 | snsspr2 | |
|
21 | 1 3 18 19 20 | mnuprss2d | |
22 | 15 21 | prssd | |
23 | 2 22 | eqsstrid | |
24 | 1 3 11 23 | mnuop3d | |
25 | simprl | |
|
26 | eleq2w | |
|
27 | eleq2w | |
|
28 | 26 27 | anbi12d | |
29 | 28 | adantl | |
30 | 4 | adantr | |
31 | 5 | adantr | |
32 | nfv | |
|
33 | nfv | |
|
34 | nfra1 | |
|
35 | 33 34 | nfan | |
36 | 32 35 | nfan | |
37 | 2 36 | mnuprdlem3 | |
38 | ralim | |
|
39 | 38 | ad2antll | |
40 | 37 39 | mpd | |
41 | 2 30 31 40 | mnuprdlem1 | |
42 | 6 | adantr | |
43 | 2 31 42 40 | mnuprdlem2 | |
44 | 41 43 | jca | |
45 | 25 29 44 | rspcedvd | |
46 | 24 45 | rexlimddv | |
47 | 3 | adantr | |
48 | simprl | |
|
49 | simprrl | |
|
50 | simprrr | |
|
51 | 49 50 | prssd | |
52 | 1 47 48 51 | mnussd | |
53 | 46 52 | rexlimddv | |