Metamath Proof Explorer


Theorem modadd1

Description: Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008)

Ref Expression
Assertion modadd1 ABCD+AmodD=BmodDA+CmodD=B+CmodD

Proof

Step Hyp Ref Expression
1 modval AD+AmodD=ADAD
2 modval BD+BmodD=BDBD
3 1 2 eqeqan12d AD+BD+AmodD=BmodDADAD=BDBD
4 3 anandirs ABD+AmodD=BmodDADAD=BDBD
5 4 adantrl ABCD+AmodD=BmodDADAD=BDBD
6 oveq1 ADAD=BDBDA-DAD+C=B-DBD+C
7 5 6 syl6bi ABCD+AmodD=BmodDA-DAD+C=B-DBD+C
8 recn AA
9 8 adantr ACD+A
10 recn CC
11 10 ad2antrl ACD+C
12 rpcn D+D
13 12 adantl AD+D
14 rerpdivcl AD+AD
15 reflcl ADAD
16 15 recnd ADAD
17 14 16 syl AD+AD
18 13 17 mulcld AD+DAD
19 18 adantrl ACD+DAD
20 9 11 19 addsubd ACD+A+C-DAD=A-DAD+C
21 20 adantlr ABCD+A+C-DAD=A-DAD+C
22 recn BB
23 22 adantr BCD+B
24 10 ad2antrl BCD+C
25 12 adantl BD+D
26 rerpdivcl BD+BD
27 reflcl BDBD
28 27 recnd BDBD
29 26 28 syl BD+BD
30 25 29 mulcld BD+DBD
31 30 adantrl BCD+DBD
32 23 24 31 addsubd BCD+B+C-DBD=B-DBD+C
33 32 adantll ABCD+B+C-DBD=B-DBD+C
34 21 33 eqeq12d ABCD+A+C-DAD=B+C-DBDA-DAD+C=B-DBD+C
35 7 34 sylibrd ABCD+AmodD=BmodDA+C-DAD=B+C-DBD
36 oveq1 A+C-DAD=B+C-DBDA+C-DADmodD=B+C-DBDmodD
37 readdcl ACA+C
38 37 adantrr ACD+A+C
39 simprr ACD+D+
40 14 flcld AD+AD
41 40 adantrl ACD+AD
42 modcyc2 A+CD+ADA+C-DADmodD=A+CmodD
43 38 39 41 42 syl3anc ACD+A+C-DADmodD=A+CmodD
44 43 adantlr ABCD+A+C-DADmodD=A+CmodD
45 readdcl BCB+C
46 45 adantrr BCD+B+C
47 simprr BCD+D+
48 26 flcld BD+BD
49 48 adantrl BCD+BD
50 modcyc2 B+CD+BDB+C-DBDmodD=B+CmodD
51 46 47 49 50 syl3anc BCD+B+C-DBDmodD=B+CmodD
52 51 adantll ABCD+B+C-DBDmodD=B+CmodD
53 44 52 eqeq12d ABCD+A+C-DADmodD=B+C-DBDmodDA+CmodD=B+CmodD
54 36 53 imbitrid ABCD+A+C-DAD=B+C-DBDA+CmodD=B+CmodD
55 35 54 syld ABCD+AmodD=BmodDA+CmodD=B+CmodD
56 55 3impia ABCD+AmodD=BmodDA+CmodD=B+CmodD