Metamath Proof Explorer


Theorem modmuladd

Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)

Ref Expression
Assertion modmuladd AB0MM+AmodM=BkA=k M+B

Proof

Step Hyp Ref Expression
1 zre AA
2 1 adantr AM+A
3 rpre M+M
4 3 adantl AM+M
5 rpne0 M+M0
6 5 adantl AM+M0
7 2 4 6 redivcld AM+AM
8 7 flcld AM+AM
9 8 3adant2 AB0MM+AM
10 oveq1 k=AMk M=AM M
11 10 oveq1d k=AMk M+AmodM=AM M+AmodM
12 11 eqeq2d k=AMA=k M+AmodMA=AM M+AmodM
13 12 adantl AB0MM+k=AMA=k M+AmodMA=AM M+AmodM
14 1 anim1i AM+AM+
15 14 3adant2 AB0MM+AM+
16 flpmodeq AM+AM M+AmodM=A
17 15 16 syl AB0MM+AM M+AmodM=A
18 17 eqcomd AB0MM+A=AM M+AmodM
19 9 13 18 rspcedvd AB0MM+kA=k M+AmodM
20 oveq2 B=AmodMk M+B=k M+AmodM
21 20 eqeq2d B=AmodMA=k M+BA=k M+AmodM
22 21 eqcoms AmodM=BA=k M+BA=k M+AmodM
23 22 rexbidv AmodM=BkA=k M+BkA=k M+AmodM
24 19 23 syl5ibrcom AB0MM+AmodM=BkA=k M+B
25 oveq1 A=k M+BAmodM=k M+BmodM
26 simpr AB0MM+kk
27 simpl3 AB0MM+kM+
28 simpl2 AB0MM+kB0M
29 muladdmodid kM+B0Mk M+BmodM=B
30 26 27 28 29 syl3anc AB0MM+kk M+BmodM=B
31 25 30 sylan9eqr AB0MM+kA=k M+BAmodM=B
32 31 rexlimdva2 AB0MM+kA=k M+BAmodM=B
33 24 32 impbid AB0MM+AmodM=BkA=k M+B