Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | modmuladd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |
|
2 | 1 | adantr | |
3 | rpre | |
|
4 | 3 | adantl | |
5 | rpne0 | |
|
6 | 5 | adantl | |
7 | 2 4 6 | redivcld | |
8 | 7 | flcld | |
9 | 8 | 3adant2 | |
10 | oveq1 | |
|
11 | 10 | oveq1d | |
12 | 11 | eqeq2d | |
13 | 12 | adantl | |
14 | 1 | anim1i | |
15 | 14 | 3adant2 | |
16 | flpmodeq | |
|
17 | 15 16 | syl | |
18 | 17 | eqcomd | |
19 | 9 13 18 | rspcedvd | |
20 | oveq2 | |
|
21 | 20 | eqeq2d | |
22 | 21 | eqcoms | |
23 | 22 | rexbidv | |
24 | 19 23 | syl5ibrcom | |
25 | oveq1 | |
|
26 | simpr | |
|
27 | simpl3 | |
|
28 | simpl2 | |
|
29 | muladdmodid | |
|
30 | 26 27 28 29 | syl3anc | |
31 | 25 30 | sylan9eqr | |
32 | 31 | rexlimdva2 | |
33 | 24 32 | impbid | |