Metamath Proof Explorer


Theorem mplcoe2

Description: Decompose a monomial into a finite product of powers of variables. (The assumption that R is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015) (Proof shortened by AV, 18-Oct-2019)

Ref Expression
Hypotheses mplcoe1.p P=ImPolyR
mplcoe1.d D=f0I|f-1Fin
mplcoe1.z 0˙=0R
mplcoe1.o 1˙=1R
mplcoe1.i φIW
mplcoe2.g G=mulGrpP
mplcoe2.m ×˙=G
mplcoe2.v V=ImVarR
mplcoe2.r φRCRing
mplcoe2.y φYD
Assertion mplcoe2 φyDify=Y1˙0˙=GkIYk×˙Vk

Proof

Step Hyp Ref Expression
1 mplcoe1.p P=ImPolyR
2 mplcoe1.d D=f0I|f-1Fin
3 mplcoe1.z 0˙=0R
4 mplcoe1.o 1˙=1R
5 mplcoe1.i φIW
6 mplcoe2.g G=mulGrpP
7 mplcoe2.m ×˙=G
8 mplcoe2.v V=ImVarR
9 mplcoe2.r φRCRing
10 mplcoe2.y φYD
11 crngring RCRingRRing
12 9 11 syl φRRing
13 1 mplcrng IWRCRingPCRing
14 5 9 13 syl2anc φPCRing
15 14 adantr φxIyIPCRing
16 eqid BaseP=BaseP
17 5 adantr φxIyIIW
18 12 adantr φxIyIRRing
19 simprr φxIyIyI
20 1 8 16 17 18 19 mvrcl φxIyIVyBaseP
21 simprl φxIyIxI
22 1 8 16 17 18 21 mvrcl φxIyIVxBaseP
23 eqid P=P
24 6 23 mgpplusg P=+G
25 24 eqcomi +G=P
26 16 25 crngcom PCRingVyBasePVxBasePVy+GVx=Vx+GVy
27 15 20 22 26 syl3anc φxIyIVy+GVx=Vx+GVy
28 27 ralrimivva φxIyIVy+GVx=Vx+GVy
29 1 2 3 4 5 6 7 8 12 10 28 mplcoe5 φyDify=Y1˙0˙=GkIYk×˙Vk