Metamath Proof Explorer


Theorem mplmul

Description: The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplmul.p P=ImPolyR
mplmul.b B=BaseP
mplmul.m ·˙=R
mplmul.t ˙=P
mplmul.d D=h0I|h-1Fin
mplmul.f φFB
mplmul.g φGB
Assertion mplmul φF˙G=kDRxyD|yfkFx·˙Gkfx

Proof

Step Hyp Ref Expression
1 mplmul.p P=ImPolyR
2 mplmul.b B=BaseP
3 mplmul.m ·˙=R
4 mplmul.t ˙=P
5 mplmul.d D=h0I|h-1Fin
6 mplmul.f φFB
7 mplmul.g φGB
8 eqid ImPwSerR=ImPwSerR
9 eqid BaseImPwSerR=BaseImPwSerR
10 1 8 4 mplmulr ˙=ImPwSerR
11 1 8 2 9 mplbasss BBaseImPwSerR
12 11 6 sselid φFBaseImPwSerR
13 11 7 sselid φGBaseImPwSerR
14 8 9 3 10 5 12 13 psrmulfval φF˙G=kDRxyD|yfkFx·˙Gkfx