Metamath Proof Explorer


Theorem mptmpoopabbrdOLD

Description: Obsolete version of mptmpoopabbrd as of 13-Dec-2024. (Contributed by Alexander van Vekens, 8-Nov-2017) (Revised by AV, 15-Jan-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mptmpoopabbrdOLD.g φGW
mptmpoopabbrdOLD.x φXAG
mptmpoopabbrdOLD.y φYBG
mptmpoopabbrdOLD.v φfh|ψV
mptmpoopabbrdOLD.r φfDGhψ
mptmpoopabbrdOLD.1 a=Xb=Yτθ
mptmpoopabbrdOLD.2 g=Gχτ
mptmpoopabbrdOLD.m M=gVaAg,bBgfh|χfDgh
Assertion mptmpoopabbrdOLD φXMGY=fh|θfDGh

Proof

Step Hyp Ref Expression
1 mptmpoopabbrdOLD.g φGW
2 mptmpoopabbrdOLD.x φXAG
3 mptmpoopabbrdOLD.y φYBG
4 mptmpoopabbrdOLD.v φfh|ψV
5 mptmpoopabbrdOLD.r φfDGhψ
6 mptmpoopabbrdOLD.1 a=Xb=Yτθ
7 mptmpoopabbrdOLD.2 g=Gχτ
8 mptmpoopabbrdOLD.m M=gVaAg,bBgfh|χfDgh
9 fveq2 g=GAg=AG
10 fveq2 g=GBg=BG
11 fveq2 g=GDg=DG
12 11 breqd g=GfDghfDGh
13 7 12 anbi12d g=GχfDghτfDGh
14 13 opabbidv g=Gfh|χfDgh=fh|τfDGh
15 9 10 14 mpoeq123dv g=GaAg,bBgfh|χfDgh=aAG,bBGfh|τfDGh
16 elex GWGV
17 16 adantr GWGWGV
18 fvex AGV
19 fvex BGV
20 18 19 pm3.2i AGVBGV
21 mpoexga AGVBGVaAG,bBGfh|τfDGhV
22 20 21 mp1i GWGWaAG,bBGfh|τfDGhV
23 8 15 17 22 fvmptd3 GWGWMG=aAG,bBGfh|τfDGh
24 1 1 23 syl2anc φMG=aAG,bBGfh|τfDGh
25 24 oveqd φXMGY=XaAG,bBGfh|τfDGhY
26 ancom θfDGhfDGhθ
27 26 opabbii fh|θfDGh=fh|fDGhθ
28 5 4 opabresex2d φfh|fDGhθV
29 27 28 eqeltrid φfh|θfDGhV
30 6 anbi1d a=Xb=YτfDGhθfDGh
31 30 opabbidv a=Xb=Yfh|τfDGh=fh|θfDGh
32 eqid aAG,bBGfh|τfDGh=aAG,bBGfh|τfDGh
33 31 32 ovmpoga XAGYBGfh|θfDGhVXaAG,bBGfh|τfDGhY=fh|θfDGh
34 2 3 29 33 syl3anc φXaAG,bBGfh|τfDGhY=fh|θfDGh
35 25 34 eqtrd φXMGY=fh|θfDGh