Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015) See mrelatglbALT for an alternate proof.
Ref | Expression | ||
---|---|---|---|
Hypotheses | mreclat.i | |
|
mrelatglb.g | |
||
Assertion | mrelatglb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreclat.i | |
|
2 | mrelatglb.g | |
|
3 | eqid | |
|
4 | 1 | ipobas | |
5 | 4 | 3ad2ant1 | |
6 | 2 | a1i | |
7 | 1 | ipopos | |
8 | 7 | a1i | |
9 | simp2 | |
|
10 | mreintcl | |
|
11 | intss1 | |
|
12 | 11 | adantl | |
13 | simpl1 | |
|
14 | 10 | adantr | |
15 | 9 | sselda | |
16 | 1 3 | ipole | |
17 | 13 14 15 16 | syl3anc | |
18 | 12 17 | mpbird | |
19 | simpll1 | |
|
20 | simplr | |
|
21 | simpl2 | |
|
22 | 21 | sselda | |
23 | 1 3 | ipole | |
24 | 19 20 22 23 | syl3anc | |
25 | 24 | biimpd | |
26 | 25 | ralimdva | |
27 | 26 | 3impia | |
28 | ssint | |
|
29 | 27 28 | sylibr | |
30 | simp11 | |
|
31 | simp2 | |
|
32 | 10 | 3ad2ant1 | |
33 | 1 3 | ipole | |
34 | 30 31 32 33 | syl3anc | |
35 | 29 34 | mpbird | |
36 | 3 5 6 8 9 10 18 35 | posglbdg | |