| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrsubffval.c |  | 
						
							| 2 |  | mrsubffval.v |  | 
						
							| 3 |  | mrsubffval.r |  | 
						
							| 4 |  | mrsubffval.s |  | 
						
							| 5 |  | mrsubffval.g |  | 
						
							| 6 | 1 2 3 4 5 | mrsubffval |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | dmeq |  | 
						
							| 9 |  | fdm |  | 
						
							| 10 | 9 | ad2antrl |  | 
						
							| 11 | 8 10 | sylan9eqr |  | 
						
							| 12 | 11 | eleq2d |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 13 | fveq1d |  | 
						
							| 15 | 12 14 | ifbieq1d |  | 
						
							| 16 | 15 | mpteq2dv |  | 
						
							| 17 | 16 | coeq1d |  | 
						
							| 18 | 17 | oveq2d |  | 
						
							| 19 | 18 | mpteq2dv |  | 
						
							| 20 | 3 | fvexi |  | 
						
							| 21 | 20 | a1i |  | 
						
							| 22 | 2 | fvexi |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 |  | simprr |  | 
						
							| 26 |  | elpm2r |  | 
						
							| 27 | 21 23 24 25 26 | syl22anc |  | 
						
							| 28 | 20 | mptex |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 7 19 27 29 | fvmptd |  | 
						
							| 31 | 30 | ex |  | 
						
							| 32 |  | 0fv |  | 
						
							| 33 |  | fvprc |  | 
						
							| 34 | 4 33 | eqtrid |  | 
						
							| 35 | 34 | fveq1d |  | 
						
							| 36 |  | fvprc |  | 
						
							| 37 | 3 36 | eqtrid |  | 
						
							| 38 | 37 | mpteq1d |  | 
						
							| 39 |  | mpt0 |  | 
						
							| 40 | 38 39 | eqtrdi |  | 
						
							| 41 | 32 35 40 | 3eqtr4a |  | 
						
							| 42 | 41 | a1d |  | 
						
							| 43 | 31 42 | pm2.61i |  |