Metamath Proof Explorer


Theorem msrrcl

Description: If X and Y have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mpstssv.p P=mPreStT
msrf.r R=mStRedT
Assertion msrrcl RX=RYXPYP

Proof

Step Hyp Ref Expression
1 mpstssv.p P=mPreStT
2 msrf.r R=mStRedT
3 1 2 msrf R:PP
4 3 ffvelcdmi XPRXP
5 4 a1i RX=RYXPRXP
6 3 ffvelcdmi YPRYP
7 eleq1 RX=RYRXPRYP
8 6 7 imbitrrid RX=RYYPRXP
9 3 fdmi domR=P
10 0nelxp ¬V×V×V
11 1 mpstssv PV×V×V
12 11 sseli PV×V×V
13 10 12 mto ¬P
14 9 13 ndmfvrcl RXPXP
15 14 adantl RX=RYRXPXP
16 7 biimpa RX=RYRXPRYP
17 9 13 ndmfvrcl RYPYP
18 16 17 syl RX=RYRXPYP
19 15 18 2thd RX=RYRXPXPYP
20 19 ex RX=RYRXPXPYP
21 5 8 20 pm5.21ndd RX=RYXPYP