Description: Lemma for mul02 . If any real does not produce 0 when multiplied by 0 , then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | mul02lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |
|
2 | remulcl | |
|
3 | 1 2 | mpan | |
4 | ax-rrecex | |
|
5 | 3 4 | sylan | |
6 | 5 | adantr | |
7 | 00id | |
|
8 | 7 | oveq2i | |
9 | 8 | eqcomi | |
10 | simprl | |
|
11 | 10 | recnd | |
12 | simplll | |
|
13 | 12 | recnd | |
14 | 11 13 | mulcld | |
15 | simplr | |
|
16 | 0cn | |
|
17 | mul32 | |
|
18 | 16 17 | mp3an3 | |
19 | 14 15 18 | syl2anc | |
20 | mul31 | |
|
21 | 16 20 | mp3an3 | |
22 | 11 13 21 | syl2anc | |
23 | simprr | |
|
24 | 22 23 | eqtrd | |
25 | 24 | oveq1d | |
26 | mullid | |
|
27 | 26 | ad2antlr | |
28 | 25 27 | eqtrd | |
29 | 19 28 | eqtrd | |
30 | 14 15 | mulcld | |
31 | adddi | |
|
32 | 16 16 31 | mp3an23 | |
33 | 30 32 | syl | |
34 | 29 29 | oveq12d | |
35 | 33 34 | eqtrd | |
36 | 9 29 35 | 3eqtr3a | |
37 | 6 36 | rexlimddv | |