Metamath Proof Explorer


Theorem mul02lem1

Description: Lemma for mul02 . If any real does not produce 0 when multiplied by 0 , then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion mul02lem1 A0A0BB=B+B

Proof

Step Hyp Ref Expression
1 0re 0
2 remulcl 0A0A
3 1 2 mpan A0A
4 ax-rrecex 0A0A0y0Ay=1
5 3 4 sylan A0A0y0Ay=1
6 5 adantr A0A0By0Ay=1
7 00id 0+0=0
8 7 oveq2i yAB0+0=yAB0
9 8 eqcomi yAB0=yAB0+0
10 simprl A0A0By0Ay=1y
11 10 recnd A0A0By0Ay=1y
12 simplll A0A0By0Ay=1A
13 12 recnd A0A0By0Ay=1A
14 11 13 mulcld A0A0By0Ay=1yA
15 simplr A0A0By0Ay=1B
16 0cn 0
17 mul32 yAB0yAB0=yA0B
18 16 17 mp3an3 yAByAB0=yA0B
19 14 15 18 syl2anc A0A0By0Ay=1yAB0=yA0B
20 mul31 yA0yA0=0Ay
21 16 20 mp3an3 yAyA0=0Ay
22 11 13 21 syl2anc A0A0By0Ay=1yA0=0Ay
23 simprr A0A0By0Ay=10Ay=1
24 22 23 eqtrd A0A0By0Ay=1yA0=1
25 24 oveq1d A0A0By0Ay=1yA0B=1B
26 mullid B1B=B
27 26 ad2antlr A0A0By0Ay=11B=B
28 25 27 eqtrd A0A0By0Ay=1yA0B=B
29 19 28 eqtrd A0A0By0Ay=1yAB0=B
30 14 15 mulcld A0A0By0Ay=1yAB
31 adddi yAB00yAB0+0=yAB0+yAB0
32 16 16 31 mp3an23 yAByAB0+0=yAB0+yAB0
33 30 32 syl A0A0By0Ay=1yAB0+0=yAB0+yAB0
34 29 29 oveq12d A0A0By0Ay=1yAB0+yAB0=B+B
35 33 34 eqtrd A0A0By0Ay=1yAB0+0=B+B
36 9 29 35 3eqtr3a A0A0By0Ay=1B=B+B
37 6 36 rexlimddv A0A0BB=B+B