Metamath Proof Explorer


Theorem mule1

Description: The Möbius function takes on values in magnitude at most 1 . (Together with mucl , this implies that it takes a value in { -u 1 , 0 , 1 } for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion mule1 AμA1

Proof

Step Hyp Ref Expression
1 muval AμA=ifpp2A01p|pA
2 iftrue pp2Aifpp2A01p|pA=0
3 1 2 sylan9eq App2AμA=0
4 3 fveq2d App2AμA=0
5 abs0 0=0
6 0le1 01
7 5 6 eqbrtri 01
8 4 7 eqbrtrdi App2AμA1
9 iffalse ¬pp2Aifpp2A01p|pA=1p|pA
10 1 9 sylan9eq A¬pp2AμA=1p|pA
11 10 fveq2d A¬pp2AμA=1p|pA
12 neg1cn 1
13 prmdvdsfi Ap|pAFin
14 hashcl p|pAFinp|pA0
15 13 14 syl Ap|pA0
16 absexp 1p|pA01p|pA=1p|pA
17 12 15 16 sylancr A1p|pA=1p|pA
18 ax-1cn 1
19 18 absnegi 1=1
20 abs1 1=1
21 19 20 eqtri 1=1
22 21 oveq1i 1p|pA=1p|pA
23 15 nn0zd Ap|pA
24 1exp p|pA1p|pA=1
25 23 24 syl A1p|pA=1
26 22 25 eqtrid A1p|pA=1
27 17 26 eqtrd A1p|pA=1
28 27 adantr A¬pp2A1p|pA=1
29 11 28 eqtrd A¬pp2AμA=1
30 1le1 11
31 29 30 eqbrtrdi A¬pp2AμA1
32 8 31 pm2.61dan AμA1