Description: Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgdi.b | |
|
mulgdi.m | |
||
mulgdi.p | |
||
Assertion | mulgdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgdi.b | |
|
2 | mulgdi.m | |
|
3 | mulgdi.p | |
|
4 | ablcmn | |
|
5 | 4 | ad2antrr | |
6 | simpr | |
|
7 | simplr2 | |
|
8 | simplr3 | |
|
9 | 1 2 3 | mulgnn0di | |
10 | 5 6 7 8 9 | syl13anc | |
11 | 4 | ad2antrr | |
12 | simpr | |
|
13 | simpr2 | |
|
14 | 13 | adantr | |
15 | simpr3 | |
|
16 | 15 | adantr | |
17 | 1 2 3 | mulgnn0di | |
18 | 11 12 14 16 17 | syl13anc | |
19 | ablgrp | |
|
20 | 19 | adantr | |
21 | simpr1 | |
|
22 | 1 3 | grpcl | |
23 | 20 13 15 22 | syl3anc | |
24 | eqid | |
|
25 | 1 2 24 | mulgneg | |
26 | 20 21 23 25 | syl3anc | |
27 | 26 | adantr | |
28 | 1 2 24 | mulgneg | |
29 | 20 21 13 28 | syl3anc | |
30 | 1 2 24 | mulgneg | |
31 | 20 21 15 30 | syl3anc | |
32 | 29 31 | oveq12d | |
33 | 32 | adantr | |
34 | 18 27 33 | 3eqtr3d | |
35 | simpl | |
|
36 | 1 2 | mulgcl | |
37 | 20 21 13 36 | syl3anc | |
38 | 1 2 | mulgcl | |
39 | 20 21 15 38 | syl3anc | |
40 | 1 3 24 | ablinvadd | |
41 | 35 37 39 40 | syl3anc | |
42 | 41 | adantr | |
43 | 34 42 | eqtr4d | |
44 | 43 | fveq2d | |
45 | 1 2 | mulgcl | |
46 | 20 21 23 45 | syl3anc | |
47 | 46 | adantr | |
48 | 1 24 | grpinvinv | |
49 | 20 47 48 | syl2an2r | |
50 | 1 3 | grpcl | |
51 | 20 37 39 50 | syl3anc | |
52 | 51 | adantr | |
53 | 1 24 | grpinvinv | |
54 | 20 52 53 | syl2an2r | |
55 | 44 49 54 | 3eqtr3d | |
56 | elznn0 | |
|
57 | 56 | simprbi | |
58 | 21 57 | syl | |
59 | 10 55 58 | mpjaodan | |