| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgdi.b |
|
| 2 |
|
mulgdi.m |
|
| 3 |
|
mulgdi.p |
|
| 4 |
|
ablcmn |
|
| 5 |
4
|
ad2antrr |
|
| 6 |
|
simpr |
|
| 7 |
|
simplr2 |
|
| 8 |
|
simplr3 |
|
| 9 |
1 2 3
|
mulgnn0di |
|
| 10 |
5 6 7 8 9
|
syl13anc |
|
| 11 |
4
|
ad2antrr |
|
| 12 |
|
simpr |
|
| 13 |
|
simpr2 |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpr3 |
|
| 16 |
15
|
adantr |
|
| 17 |
1 2 3
|
mulgnn0di |
|
| 18 |
11 12 14 16 17
|
syl13anc |
|
| 19 |
|
ablgrp |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simpr1 |
|
| 22 |
1 3
|
grpcl |
|
| 23 |
20 13 15 22
|
syl3anc |
|
| 24 |
|
eqid |
|
| 25 |
1 2 24
|
mulgneg |
|
| 26 |
20 21 23 25
|
syl3anc |
|
| 27 |
26
|
adantr |
|
| 28 |
1 2 24
|
mulgneg |
|
| 29 |
20 21 13 28
|
syl3anc |
|
| 30 |
1 2 24
|
mulgneg |
|
| 31 |
20 21 15 30
|
syl3anc |
|
| 32 |
29 31
|
oveq12d |
|
| 33 |
32
|
adantr |
|
| 34 |
18 27 33
|
3eqtr3d |
|
| 35 |
|
simpl |
|
| 36 |
1 2
|
mulgcl |
|
| 37 |
20 21 13 36
|
syl3anc |
|
| 38 |
1 2
|
mulgcl |
|
| 39 |
20 21 15 38
|
syl3anc |
|
| 40 |
1 3 24
|
ablinvadd |
|
| 41 |
35 37 39 40
|
syl3anc |
|
| 42 |
41
|
adantr |
|
| 43 |
34 42
|
eqtr4d |
|
| 44 |
43
|
fveq2d |
|
| 45 |
1 2
|
mulgcl |
|
| 46 |
20 21 23 45
|
syl3anc |
|
| 47 |
46
|
adantr |
|
| 48 |
1 24
|
grpinvinv |
|
| 49 |
20 47 48
|
syl2an2r |
|
| 50 |
1 3
|
grpcl |
|
| 51 |
20 37 39 50
|
syl3anc |
|
| 52 |
51
|
adantr |
|
| 53 |
1 24
|
grpinvinv |
|
| 54 |
20 52 53
|
syl2an2r |
|
| 55 |
44 49 54
|
3eqtr3d |
|
| 56 |
|
elznn0 |
|
| 57 |
56
|
simprbi |
|
| 58 |
21 57
|
syl |
|
| 59 |
10 55 58
|
mpjaodan |
|