| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgdi.b |
|
| 2 |
|
mulgdi.m |
|
| 3 |
|
mulgdi.p |
|
| 4 |
|
cmnmnd |
|
| 5 |
4
|
ad2antrr |
|
| 6 |
1 3
|
mndcl |
|
| 7 |
6
|
3expb |
|
| 8 |
5 7
|
sylan |
|
| 9 |
1 3
|
cmncom |
|
| 10 |
9
|
3expb |
|
| 11 |
10
|
ad4ant14 |
|
| 12 |
1 3
|
mndass |
|
| 13 |
5 12
|
sylan |
|
| 14 |
|
simpr |
|
| 15 |
|
nnuz |
|
| 16 |
14 15
|
eleqtrdi |
|
| 17 |
|
simplr2 |
|
| 18 |
|
elfznn |
|
| 19 |
|
fvconst2g |
|
| 20 |
17 18 19
|
syl2an |
|
| 21 |
17
|
adantr |
|
| 22 |
20 21
|
eqeltrd |
|
| 23 |
|
simplr3 |
|
| 24 |
|
fvconst2g |
|
| 25 |
23 18 24
|
syl2an |
|
| 26 |
23
|
adantr |
|
| 27 |
25 26
|
eqeltrd |
|
| 28 |
1 3
|
mndcl |
|
| 29 |
5 17 23 28
|
syl3anc |
|
| 30 |
|
fvconst2g |
|
| 31 |
29 18 30
|
syl2an |
|
| 32 |
20 25
|
oveq12d |
|
| 33 |
31 32
|
eqtr4d |
|
| 34 |
8 11 13 16 22 27 33
|
seqcaopr |
|
| 35 |
|
eqid |
|
| 36 |
1 3 2 35
|
mulgnn |
|
| 37 |
14 29 36
|
syl2anc |
|
| 38 |
|
eqid |
|
| 39 |
1 3 2 38
|
mulgnn |
|
| 40 |
14 17 39
|
syl2anc |
|
| 41 |
|
eqid |
|
| 42 |
1 3 2 41
|
mulgnn |
|
| 43 |
14 23 42
|
syl2anc |
|
| 44 |
40 43
|
oveq12d |
|
| 45 |
34 37 44
|
3eqtr4d |
|
| 46 |
4
|
ad2antrr |
|
| 47 |
|
simplr2 |
|
| 48 |
|
simplr3 |
|
| 49 |
46 47 48 28
|
syl3anc |
|
| 50 |
|
eqid |
|
| 51 |
1 50 2
|
mulg0 |
|
| 52 |
49 51
|
syl |
|
| 53 |
|
eqid |
|
| 54 |
53 50
|
mndidcl |
|
| 55 |
53 3 50
|
mndlid |
|
| 56 |
4 54 55
|
syl2anc2 |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
52 57
|
eqtr4d |
|
| 59 |
|
simpr |
|
| 60 |
59
|
oveq1d |
|
| 61 |
59
|
oveq1d |
|
| 62 |
1 50 2
|
mulg0 |
|
| 63 |
47 62
|
syl |
|
| 64 |
61 63
|
eqtrd |
|
| 65 |
59
|
oveq1d |
|
| 66 |
1 50 2
|
mulg0 |
|
| 67 |
48 66
|
syl |
|
| 68 |
65 67
|
eqtrd |
|
| 69 |
64 68
|
oveq12d |
|
| 70 |
58 60 69
|
3eqtr4d |
|
| 71 |
|
simpr1 |
|
| 72 |
|
elnn0 |
|
| 73 |
71 72
|
sylib |
|
| 74 |
45 70 73
|
mpjaodan |
|