Description: Sum of group multiples, generalized to ZZ . (Contributed by Mario Carneiro, 13-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgnndir.b | |
|
mulgnndir.t | |
||
mulgnndir.p | |
||
Assertion | mulgdir | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnndir.b | |
|
2 | mulgnndir.t | |
|
3 | mulgnndir.p | |
|
4 | 1 2 3 | mulgdirlem | |
5 | 4 | 3expa | |
6 | simpll | |
|
7 | simpr2 | |
|
8 | 7 | adantr | |
9 | 8 | znegcld | |
10 | simpr1 | |
|
11 | 10 | adantr | |
12 | 11 | znegcld | |
13 | simplr3 | |
|
14 | 11 | zcnd | |
15 | 14 | negcld | |
16 | 8 | zcnd | |
17 | 16 | negcld | |
18 | 14 16 | negdid | |
19 | 15 17 18 | comraddd | |
20 | simpr | |
|
21 | 19 20 | eqeltrrd | |
22 | 1 2 3 | mulgdirlem | |
23 | 6 9 12 13 21 22 | syl131anc | |
24 | 19 | oveq1d | |
25 | 10 7 | zaddcld | |
26 | 25 | adantr | |
27 | eqid | |
|
28 | 1 2 27 | mulgneg | |
29 | 6 26 13 28 | syl3anc | |
30 | 24 29 | eqtr3d | |
31 | 1 2 27 | mulgneg | |
32 | 6 8 13 31 | syl3anc | |
33 | 1 2 27 | mulgneg | |
34 | 6 11 13 33 | syl3anc | |
35 | 32 34 | oveq12d | |
36 | 1 2 | mulgcl | |
37 | 6 11 13 36 | syl3anc | |
38 | 1 2 | mulgcl | |
39 | 6 8 13 38 | syl3anc | |
40 | 1 3 27 | grpinvadd | |
41 | 6 37 39 40 | syl3anc | |
42 | 35 41 | eqtr4d | |
43 | 23 30 42 | 3eqtr3d | |
44 | 43 | fveq2d | |
45 | 1 2 | mulgcl | |
46 | 6 26 13 45 | syl3anc | |
47 | 1 27 | grpinvinv | |
48 | 6 46 47 | syl2anc | |
49 | 1 3 | grpcl | |
50 | 6 37 39 49 | syl3anc | |
51 | 1 27 | grpinvinv | |
52 | 6 50 51 | syl2anc | |
53 | 44 48 52 | 3eqtr3d | |
54 | elznn0 | |
|
55 | 54 | simprbi | |
56 | 25 55 | syl | |
57 | 5 53 56 | mpjaodan | |