| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnndir.b |
|
| 2 |
|
mulgnndir.t |
|
| 3 |
|
mulgnndir.p |
|
| 4 |
1 2 3
|
mulgdirlem |
|
| 5 |
4
|
3expa |
|
| 6 |
|
simpll |
|
| 7 |
|
simpr2 |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
znegcld |
|
| 10 |
|
simpr1 |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
znegcld |
|
| 13 |
|
simplr3 |
|
| 14 |
11
|
zcnd |
|
| 15 |
14
|
negcld |
|
| 16 |
8
|
zcnd |
|
| 17 |
16
|
negcld |
|
| 18 |
14 16
|
negdid |
|
| 19 |
15 17 18
|
comraddd |
|
| 20 |
|
simpr |
|
| 21 |
19 20
|
eqeltrrd |
|
| 22 |
1 2 3
|
mulgdirlem |
|
| 23 |
6 9 12 13 21 22
|
syl131anc |
|
| 24 |
19
|
oveq1d |
|
| 25 |
10 7
|
zaddcld |
|
| 26 |
25
|
adantr |
|
| 27 |
|
eqid |
|
| 28 |
1 2 27
|
mulgneg |
|
| 29 |
6 26 13 28
|
syl3anc |
|
| 30 |
24 29
|
eqtr3d |
|
| 31 |
1 2 27
|
mulgneg |
|
| 32 |
6 8 13 31
|
syl3anc |
|
| 33 |
1 2 27
|
mulgneg |
|
| 34 |
6 11 13 33
|
syl3anc |
|
| 35 |
32 34
|
oveq12d |
|
| 36 |
1 2
|
mulgcl |
|
| 37 |
6 11 13 36
|
syl3anc |
|
| 38 |
1 2
|
mulgcl |
|
| 39 |
6 8 13 38
|
syl3anc |
|
| 40 |
1 3 27
|
grpinvadd |
|
| 41 |
6 37 39 40
|
syl3anc |
|
| 42 |
35 41
|
eqtr4d |
|
| 43 |
23 30 42
|
3eqtr3d |
|
| 44 |
43
|
fveq2d |
|
| 45 |
1 2
|
mulgcl |
|
| 46 |
6 26 13 45
|
syl3anc |
|
| 47 |
1 27
|
grpinvinv |
|
| 48 |
6 46 47
|
syl2anc |
|
| 49 |
1 3
|
grpcl |
|
| 50 |
6 37 39 49
|
syl3anc |
|
| 51 |
1 27
|
grpinvinv |
|
| 52 |
6 50 51
|
syl2anc |
|
| 53 |
44 48 52
|
3eqtr3d |
|
| 54 |
|
elznn0 |
|
| 55 |
54
|
simprbi |
|
| 56 |
25 55
|
syl |
|
| 57 |
5 53 56
|
mpjaodan |
|