Metamath Proof Explorer


Theorem mulgdir

Description: Sum of group multiples, generalized to ZZ . (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgnndir.b B=BaseG
mulgnndir.t ·˙=G
mulgnndir.p +˙=+G
Assertion mulgdir GGrpMNXBM+N·˙X=M·˙X+˙N·˙X

Proof

Step Hyp Ref Expression
1 mulgnndir.b B=BaseG
2 mulgnndir.t ·˙=G
3 mulgnndir.p +˙=+G
4 1 2 3 mulgdirlem GGrpMNXBM+N0M+N·˙X=M·˙X+˙N·˙X
5 4 3expa GGrpMNXBM+N0M+N·˙X=M·˙X+˙N·˙X
6 simpll GGrpMNXBM+N0GGrp
7 simpr2 GGrpMNXBN
8 7 adantr GGrpMNXBM+N0N
9 8 znegcld GGrpMNXBM+N0N
10 simpr1 GGrpMNXBM
11 10 adantr GGrpMNXBM+N0M
12 11 znegcld GGrpMNXBM+N0M
13 simplr3 GGrpMNXBM+N0XB
14 11 zcnd GGrpMNXBM+N0M
15 14 negcld GGrpMNXBM+N0M
16 8 zcnd GGrpMNXBM+N0N
17 16 negcld GGrpMNXBM+N0N
18 14 16 negdid GGrpMNXBM+N0M+N=-M+- N
19 15 17 18 comraddd GGrpMNXBM+N0M+N=-N+- M
20 simpr GGrpMNXBM+N0M+N0
21 19 20 eqeltrrd GGrpMNXBM+N0-N+- M0
22 1 2 3 mulgdirlem GGrpNMXB-N+- M0-N+- M·˙X=- N·˙X+˙- M·˙X
23 6 9 12 13 21 22 syl131anc GGrpMNXBM+N0-N+- M·˙X=- N·˙X+˙- M·˙X
24 19 oveq1d GGrpMNXBM+N0M+N·˙X=-N+- M·˙X
25 10 7 zaddcld GGrpMNXBM+N
26 25 adantr GGrpMNXBM+N0M+N
27 eqid invgG=invgG
28 1 2 27 mulgneg GGrpM+NXBM+N·˙X=invgGM+N·˙X
29 6 26 13 28 syl3anc GGrpMNXBM+N0M+N·˙X=invgGM+N·˙X
30 24 29 eqtr3d GGrpMNXBM+N0-N+- M·˙X=invgGM+N·˙X
31 1 2 27 mulgneg GGrpNXB- N·˙X=invgGN·˙X
32 6 8 13 31 syl3anc GGrpMNXBM+N0- N·˙X=invgGN·˙X
33 1 2 27 mulgneg GGrpMXB- M·˙X=invgGM·˙X
34 6 11 13 33 syl3anc GGrpMNXBM+N0- M·˙X=invgGM·˙X
35 32 34 oveq12d GGrpMNXBM+N0- N·˙X+˙- M·˙X=invgGN·˙X+˙invgGM·˙X
36 1 2 mulgcl GGrpMXBM·˙XB
37 6 11 13 36 syl3anc GGrpMNXBM+N0M·˙XB
38 1 2 mulgcl GGrpNXBN·˙XB
39 6 8 13 38 syl3anc GGrpMNXBM+N0N·˙XB
40 1 3 27 grpinvadd GGrpM·˙XBN·˙XBinvgGM·˙X+˙N·˙X=invgGN·˙X+˙invgGM·˙X
41 6 37 39 40 syl3anc GGrpMNXBM+N0invgGM·˙X+˙N·˙X=invgGN·˙X+˙invgGM·˙X
42 35 41 eqtr4d GGrpMNXBM+N0- N·˙X+˙- M·˙X=invgGM·˙X+˙N·˙X
43 23 30 42 3eqtr3d GGrpMNXBM+N0invgGM+N·˙X=invgGM·˙X+˙N·˙X
44 43 fveq2d GGrpMNXBM+N0invgGinvgGM+N·˙X=invgGinvgGM·˙X+˙N·˙X
45 1 2 mulgcl GGrpM+NXBM+N·˙XB
46 6 26 13 45 syl3anc GGrpMNXBM+N0M+N·˙XB
47 1 27 grpinvinv GGrpM+N·˙XBinvgGinvgGM+N·˙X=M+N·˙X
48 6 46 47 syl2anc GGrpMNXBM+N0invgGinvgGM+N·˙X=M+N·˙X
49 1 3 grpcl GGrpM·˙XBN·˙XBM·˙X+˙N·˙XB
50 6 37 39 49 syl3anc GGrpMNXBM+N0M·˙X+˙N·˙XB
51 1 27 grpinvinv GGrpM·˙X+˙N·˙XBinvgGinvgGM·˙X+˙N·˙X=M·˙X+˙N·˙X
52 6 50 51 syl2anc GGrpMNXBM+N0invgGinvgGM·˙X+˙N·˙X=M·˙X+˙N·˙X
53 44 48 52 3eqtr3d GGrpMNXBM+N0M+N·˙X=M·˙X+˙N·˙X
54 elznn0 M+NM+NM+N0M+N0
55 54 simprbi M+NM+N0M+N0
56 25 55 syl GGrpMNXBM+N0M+N0
57 5 53 56 mpjaodan GGrpMNXBM+N·˙X=M·˙X+˙N·˙X