Metamath Proof Explorer


Theorem mulre

Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008)

Ref Expression
Assertion mulre A B B 0 A B A

Proof

Step Hyp Ref Expression
1 rereb A A A = A
2 1 3ad2ant1 A B B 0 A A = A
3 recl A A
4 3 recnd A A
5 4 3ad2ant1 A B B 0 A
6 simp1 A B B 0 A
7 recn B B
8 7 anim1i B B 0 B B 0
9 8 3adant1 A B B 0 B B 0
10 mulcan A A B B 0 B A = B A A = A
11 5 6 9 10 syl3anc A B B 0 B A = B A A = A
12 7 adantr B A B
13 4 adantl B A A
14 ax-icn i
15 imcl A A
16 15 recnd A A
17 mulcl i A i A
18 14 16 17 sylancr A i A
19 18 adantl B A i A
20 12 13 19 adddid B A B A + i A = B A + B i A
21 replim A A = A + i A
22 21 adantl B A A = A + i A
23 22 oveq2d B A B A = B A + i A
24 mul12 i B A i B A = B i A
25 14 7 16 24 mp3an3an B A i B A = B i A
26 25 oveq2d B A B A + i B A = B A + B i A
27 20 23 26 3eqtr4d B A B A = B A + i B A
28 27 fveq2d B A B A = B A + i B A
29 remulcl B A B A
30 3 29 sylan2 B A B A
31 remulcl B A B A
32 15 31 sylan2 B A B A
33 crre B A B A B A + i B A = B A
34 30 32 33 syl2anc B A B A + i B A = B A
35 28 34 eqtr2d B A B A = B A
36 35 eqeq1d B A B A = B A B A = B A
37 mulcl B A B A
38 7 37 sylan B A B A
39 rereb B A B A B A = B A
40 38 39 syl B A B A B A = B A
41 36 40 bitr4d B A B A = B A B A
42 41 ancoms A B B A = B A B A
43 42 3adant3 A B B 0 B A = B A B A
44 2 11 43 3bitr2d A B B 0 A B A