Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | mulre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rereb | |
|
2 | 1 | 3ad2ant1 | |
3 | recl | |
|
4 | 3 | recnd | |
5 | 4 | 3ad2ant1 | |
6 | simp1 | |
|
7 | recn | |
|
8 | 7 | anim1i | |
9 | 8 | 3adant1 | |
10 | mulcan | |
|
11 | 5 6 9 10 | syl3anc | |
12 | 7 | adantr | |
13 | 4 | adantl | |
14 | ax-icn | |
|
15 | imcl | |
|
16 | 15 | recnd | |
17 | mulcl | |
|
18 | 14 16 17 | sylancr | |
19 | 18 | adantl | |
20 | 12 13 19 | adddid | |
21 | replim | |
|
22 | 21 | adantl | |
23 | 22 | oveq2d | |
24 | mul12 | |
|
25 | 14 7 16 24 | mp3an3an | |
26 | 25 | oveq2d | |
27 | 20 23 26 | 3eqtr4d | |
28 | 27 | fveq2d | |
29 | remulcl | |
|
30 | 3 29 | sylan2 | |
31 | remulcl | |
|
32 | 15 31 | sylan2 | |
33 | crre | |
|
34 | 30 32 33 | syl2anc | |
35 | 28 34 | eqtr2d | |
36 | 35 | eqeq1d | |
37 | mulcl | |
|
38 | 7 37 | sylan | |
39 | rereb | |
|
40 | 38 39 | syl | |
41 | 36 40 | bitr4d | |
42 | 41 | ancoms | |
43 | 42 | 3adant3 | |
44 | 2 11 43 | 3bitr2d | |