Metamath Proof Explorer


Theorem mulre

Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008)

Ref Expression
Assertion mulre ABB0ABA

Proof

Step Hyp Ref Expression
1 rereb AAA=A
2 1 3ad2ant1 ABB0AA=A
3 recl AA
4 3 recnd AA
5 4 3ad2ant1 ABB0A
6 simp1 ABB0A
7 recn BB
8 7 anim1i BB0BB0
9 8 3adant1 ABB0BB0
10 mulcan AABB0BA=BAA=A
11 5 6 9 10 syl3anc ABB0BA=BAA=A
12 7 adantr BAB
13 4 adantl BAA
14 ax-icn i
15 imcl AA
16 15 recnd AA
17 mulcl iAiA
18 14 16 17 sylancr AiA
19 18 adantl BAiA
20 12 13 19 adddid BABA+iA=BA+BiA
21 replim AA=A+iA
22 21 adantl BAA=A+iA
23 22 oveq2d BABA=BA+iA
24 mul12 iBAiBA=BiA
25 14 7 16 24 mp3an3an BAiBA=BiA
26 25 oveq2d BABA+iBA=BA+BiA
27 20 23 26 3eqtr4d BABA=BA+iBA
28 27 fveq2d BABA=BA+iBA
29 remulcl BABA
30 3 29 sylan2 BABA
31 remulcl BABA
32 15 31 sylan2 BABA
33 crre BABABA+iBA=BA
34 30 32 33 syl2anc BABA+iBA=BA
35 28 34 eqtr2d BABA=BA
36 35 eqeq1d BABA=BABA=BA
37 mulcl BABA
38 7 37 sylan BABA
39 rereb BABABA=BA
40 38 39 syl BABABA=BA
41 36 40 bitr4d BABA=BABA
42 41 ancoms ABBA=BABA
43 42 3adant3 ABB0BA=BABA
44 2 11 43 3bitr2d ABB0ABA