| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulsunif2.1 |  | 
						
							| 2 |  | mulsunif2.2 |  | 
						
							| 3 |  | mulsunif2.3 |  | 
						
							| 4 |  | mulsunif2.4 |  | 
						
							| 5 | 1 2 3 4 | mulsunif |  | 
						
							| 6 | 1 | scutcld |  | 
						
							| 7 | 3 6 | eqeltrd |  | 
						
							| 8 | 2 | scutcld |  | 
						
							| 9 | 4 8 | eqeltrd |  | 
						
							| 10 | 7 9 | mulscld |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 |  | ssltss1 |  | 
						
							| 13 | 1 12 | syl |  | 
						
							| 14 | 13 | sselda |  | 
						
							| 15 | 14 | adantrr |  | 
						
							| 16 | 9 | adantr |  | 
						
							| 17 | 15 16 | mulscld |  | 
						
							| 18 | 7 | adantr |  | 
						
							| 19 |  | ssltss1 |  | 
						
							| 20 | 2 19 | syl |  | 
						
							| 21 | 20 | sselda |  | 
						
							| 22 | 21 | adantrl |  | 
						
							| 23 | 18 22 | mulscld |  | 
						
							| 24 | 15 22 | mulscld |  | 
						
							| 25 | 23 24 | subscld |  | 
						
							| 26 | 11 17 25 | subsubs4d |  | 
						
							| 27 | 26 | oveq2d |  | 
						
							| 28 | 17 25 | addscld |  | 
						
							| 29 | 11 28 | nncansd |  | 
						
							| 30 | 27 29 | eqtrd |  | 
						
							| 31 | 18 15 | subscld |  | 
						
							| 32 | 31 16 22 | subsdid |  | 
						
							| 33 | 18 15 16 | subsdird |  | 
						
							| 34 | 18 15 22 | subsdird |  | 
						
							| 35 | 33 34 | oveq12d |  | 
						
							| 36 | 32 35 | eqtrd |  | 
						
							| 37 | 36 | oveq2d |  | 
						
							| 38 | 17 23 24 | addsubsassd |  | 
						
							| 39 | 30 37 38 | 3eqtr4rd |  | 
						
							| 40 | 39 | eqeq2d |  | 
						
							| 41 | 40 | 2rexbidva |  | 
						
							| 42 | 41 | abbidv |  | 
						
							| 43 | 10 | adantr |  | 
						
							| 44 |  | ssltss2 |  | 
						
							| 45 | 1 44 | syl |  | 
						
							| 46 | 45 | sselda |  | 
						
							| 47 | 46 | adantrr |  | 
						
							| 48 |  | ssltss2 |  | 
						
							| 49 | 2 48 | syl |  | 
						
							| 50 | 49 | sselda |  | 
						
							| 51 | 50 | adantrl |  | 
						
							| 52 | 47 51 | mulscld |  | 
						
							| 53 | 7 | adantr |  | 
						
							| 54 | 53 51 | mulscld |  | 
						
							| 55 | 52 54 | subscld |  | 
						
							| 56 | 9 | adantr |  | 
						
							| 57 | 47 56 | mulscld |  | 
						
							| 58 | 57 43 | subscld |  | 
						
							| 59 | 43 55 58 | subsubs2d |  | 
						
							| 60 | 43 58 55 | addsubsassd |  | 
						
							| 61 |  | pncan3s |  | 
						
							| 62 | 43 57 61 | syl2anc |  | 
						
							| 63 | 62 | oveq1d |  | 
						
							| 64 | 59 60 63 | 3eqtr2d |  | 
						
							| 65 | 47 53 | subscld |  | 
						
							| 66 | 65 51 56 | subsdid |  | 
						
							| 67 | 47 53 51 | subsdird |  | 
						
							| 68 | 47 53 56 | subsdird |  | 
						
							| 69 | 67 68 | oveq12d |  | 
						
							| 70 | 66 69 | eqtrd |  | 
						
							| 71 | 70 | oveq2d |  | 
						
							| 72 | 57 54 52 | addsubsassd |  | 
						
							| 73 | 57 52 54 | subsubs2d |  | 
						
							| 74 | 72 73 | eqtr4d |  | 
						
							| 75 | 64 71 74 | 3eqtr4rd |  | 
						
							| 76 | 75 | eqeq2d |  | 
						
							| 77 | 76 | 2rexbidva |  | 
						
							| 78 | 77 | abbidv |  | 
						
							| 79 | 42 78 | uneq12d |  | 
						
							| 80 | 7 | adantr |  | 
						
							| 81 | 49 | sselda |  | 
						
							| 82 | 81 | adantrl |  | 
						
							| 83 | 80 82 | mulscld |  | 
						
							| 84 | 10 | adantr |  | 
						
							| 85 | 83 84 | subscld |  | 
						
							| 86 | 13 | sselda |  | 
						
							| 87 | 86 | adantrr |  | 
						
							| 88 | 87 82 | mulscld |  | 
						
							| 89 | 9 | adantr |  | 
						
							| 90 | 87 89 | mulscld |  | 
						
							| 91 | 85 88 90 | subsubs2d |  | 
						
							| 92 | 90 88 | subscld |  | 
						
							| 93 | 83 92 84 | addsubsd |  | 
						
							| 94 | 91 93 | eqtr4d |  | 
						
							| 95 | 94 | oveq2d |  | 
						
							| 96 | 83 92 | addscld |  | 
						
							| 97 |  | pncan3s |  | 
						
							| 98 | 84 96 97 | syl2anc |  | 
						
							| 99 | 95 98 | eqtrd |  | 
						
							| 100 | 82 89 | subscld |  | 
						
							| 101 | 80 87 100 | subsdird |  | 
						
							| 102 | 80 82 89 | subsdid |  | 
						
							| 103 | 87 82 89 | subsdid |  | 
						
							| 104 | 102 103 | oveq12d |  | 
						
							| 105 | 101 104 | eqtrd |  | 
						
							| 106 | 105 | oveq2d |  | 
						
							| 107 | 90 83 | addscomd |  | 
						
							| 108 | 107 | oveq1d |  | 
						
							| 109 | 83 90 88 | addsubsassd |  | 
						
							| 110 | 108 109 | eqtrd |  | 
						
							| 111 | 99 106 110 | 3eqtr4rd |  | 
						
							| 112 | 111 | eqeq2d |  | 
						
							| 113 | 112 | 2rexbidva |  | 
						
							| 114 | 113 | abbidv |  | 
						
							| 115 | 45 | sselda |  | 
						
							| 116 | 115 | adantrr |  | 
						
							| 117 | 9 | adantr |  | 
						
							| 118 | 116 117 | mulscld |  | 
						
							| 119 | 20 | sselda |  | 
						
							| 120 | 119 | adantrl |  | 
						
							| 121 | 116 120 | mulscld |  | 
						
							| 122 | 118 121 | subscld |  | 
						
							| 123 | 10 | adantr |  | 
						
							| 124 | 7 | adantr |  | 
						
							| 125 | 124 120 | mulscld |  | 
						
							| 126 | 122 123 125 | subsubs2d |  | 
						
							| 127 | 122 125 123 | addsubsassd |  | 
						
							| 128 | 126 127 | eqtr4d |  | 
						
							| 129 | 128 | oveq2d |  | 
						
							| 130 | 122 125 | addscld |  | 
						
							| 131 |  | pncan3s |  | 
						
							| 132 | 123 130 131 | syl2anc |  | 
						
							| 133 | 129 132 | eqtrd |  | 
						
							| 134 | 117 120 | subscld |  | 
						
							| 135 | 116 124 134 | subsdird |  | 
						
							| 136 | 116 117 120 | subsdid |  | 
						
							| 137 | 124 117 120 | subsdid |  | 
						
							| 138 | 136 137 | oveq12d |  | 
						
							| 139 | 135 138 | eqtrd |  | 
						
							| 140 | 139 | oveq2d |  | 
						
							| 141 | 118 125 121 | addsubsd |  | 
						
							| 142 | 133 140 141 | 3eqtr4rd |  | 
						
							| 143 | 142 | eqeq2d |  | 
						
							| 144 | 143 | 2rexbidva |  | 
						
							| 145 | 144 | abbidv |  | 
						
							| 146 | 114 145 | uneq12d |  | 
						
							| 147 | 79 146 | oveq12d |  | 
						
							| 148 | 5 147 | eqtrd |  |