| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulsunif2.1 |  |-  ( ph -> L < | 
						
							| 2 |  | mulsunif2.2 |  |-  ( ph -> M < | 
						
							| 3 |  | mulsunif2.3 |  |-  ( ph -> A = ( L |s R ) ) | 
						
							| 4 |  | mulsunif2.4 |  |-  ( ph -> B = ( M |s S ) ) | 
						
							| 5 | 1 2 3 4 | mulsunif |  |-  ( ph -> ( A x.s B ) = ( ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) ) | 
						
							| 6 | 1 | scutcld |  |-  ( ph -> ( L |s R ) e. No ) | 
						
							| 7 | 3 6 | eqeltrd |  |-  ( ph -> A e. No ) | 
						
							| 8 | 2 | scutcld |  |-  ( ph -> ( M |s S ) e. No ) | 
						
							| 9 | 4 8 | eqeltrd |  |-  ( ph -> B e. No ) | 
						
							| 10 | 7 9 | mulscld |  |-  ( ph -> ( A x.s B ) e. No ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s B ) e. No ) | 
						
							| 12 |  | ssltss1 |  |-  ( L < L C_ No ) | 
						
							| 13 | 1 12 | syl |  |-  ( ph -> L C_ No ) | 
						
							| 14 | 13 | sselda |  |-  ( ( ph /\ p e. L ) -> p e. No ) | 
						
							| 15 | 14 | adantrr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. No ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. No ) | 
						
							| 17 | 15 16 | mulscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s B ) e. No ) | 
						
							| 18 | 7 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. No ) | 
						
							| 19 |  | ssltss1 |  |-  ( M < M C_ No ) | 
						
							| 20 | 2 19 | syl |  |-  ( ph -> M C_ No ) | 
						
							| 21 | 20 | sselda |  |-  ( ( ph /\ q e. M ) -> q e. No ) | 
						
							| 22 | 21 | adantrl |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. No ) | 
						
							| 23 | 18 22 | mulscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s q ) e. No ) | 
						
							| 24 | 15 22 | mulscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s q ) e. No ) | 
						
							| 25 | 23 24 | subscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A x.s q ) -s ( p x.s q ) ) e. No ) | 
						
							| 26 | 11 17 25 | subsubs4d |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( A x.s B ) -s ( p x.s B ) ) -s ( ( A x.s q ) -s ( p x.s q ) ) ) = ( ( A x.s B ) -s ( ( p x.s B ) +s ( ( A x.s q ) -s ( p x.s q ) ) ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A x.s B ) -s ( ( ( A x.s B ) -s ( p x.s B ) ) -s ( ( A x.s q ) -s ( p x.s q ) ) ) ) = ( ( A x.s B ) -s ( ( A x.s B ) -s ( ( p x.s B ) +s ( ( A x.s q ) -s ( p x.s q ) ) ) ) ) ) | 
						
							| 28 | 17 25 | addscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) +s ( ( A x.s q ) -s ( p x.s q ) ) ) e. No ) | 
						
							| 29 | 11 28 | nncansd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A x.s B ) -s ( ( A x.s B ) -s ( ( p x.s B ) +s ( ( A x.s q ) -s ( p x.s q ) ) ) ) ) = ( ( p x.s B ) +s ( ( A x.s q ) -s ( p x.s q ) ) ) ) | 
						
							| 30 | 27 29 | eqtrd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A x.s B ) -s ( ( ( A x.s B ) -s ( p x.s B ) ) -s ( ( A x.s q ) -s ( p x.s q ) ) ) ) = ( ( p x.s B ) +s ( ( A x.s q ) -s ( p x.s q ) ) ) ) | 
						
							| 31 | 18 15 | subscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A -s p ) e. No ) | 
						
							| 32 | 31 16 22 | subsdid |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A -s p ) x.s ( B -s q ) ) = ( ( ( A -s p ) x.s B ) -s ( ( A -s p ) x.s q ) ) ) | 
						
							| 33 | 18 15 16 | subsdird |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A -s p ) x.s B ) = ( ( A x.s B ) -s ( p x.s B ) ) ) | 
						
							| 34 | 18 15 22 | subsdird |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A -s p ) x.s q ) = ( ( A x.s q ) -s ( p x.s q ) ) ) | 
						
							| 35 | 33 34 | oveq12d |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( A -s p ) x.s B ) -s ( ( A -s p ) x.s q ) ) = ( ( ( A x.s B ) -s ( p x.s B ) ) -s ( ( A x.s q ) -s ( p x.s q ) ) ) ) | 
						
							| 36 | 32 35 | eqtrd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A -s p ) x.s ( B -s q ) ) = ( ( ( A x.s B ) -s ( p x.s B ) ) -s ( ( A x.s q ) -s ( p x.s q ) ) ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) = ( ( A x.s B ) -s ( ( ( A x.s B ) -s ( p x.s B ) ) -s ( ( A x.s q ) -s ( p x.s q ) ) ) ) ) | 
						
							| 38 | 17 23 24 | addsubsassd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( p x.s B ) +s ( ( A x.s q ) -s ( p x.s q ) ) ) ) | 
						
							| 39 | 30 37 38 | 3eqtr4rd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) ) | 
						
							| 41 | 40 | 2rexbidva |  |-  ( ph -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) ) ) | 
						
							| 42 | 41 | abbidv |  |-  ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } = { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } ) | 
						
							| 43 | 10 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s B ) e. No ) | 
						
							| 44 |  | ssltss2 |  |-  ( L < R C_ No ) | 
						
							| 45 | 1 44 | syl |  |-  ( ph -> R C_ No ) | 
						
							| 46 | 45 | sselda |  |-  ( ( ph /\ r e. R ) -> r e. No ) | 
						
							| 47 | 46 | adantrr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. No ) | 
						
							| 48 |  | ssltss2 |  |-  ( M < S C_ No ) | 
						
							| 49 | 2 48 | syl |  |-  ( ph -> S C_ No ) | 
						
							| 50 | 49 | sselda |  |-  ( ( ph /\ s e. S ) -> s e. No ) | 
						
							| 51 | 50 | adantrl |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. No ) | 
						
							| 52 | 47 51 | mulscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s s ) e. No ) | 
						
							| 53 | 7 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. No ) | 
						
							| 54 | 53 51 | mulscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s s ) e. No ) | 
						
							| 55 | 52 54 | subscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s s ) -s ( A x.s s ) ) e. No ) | 
						
							| 56 | 9 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. No ) | 
						
							| 57 | 47 56 | mulscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s B ) e. No ) | 
						
							| 58 | 57 43 | subscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) -s ( A x.s B ) ) e. No ) | 
						
							| 59 | 43 55 58 | subsubs2d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s B ) -s ( ( ( r x.s s ) -s ( A x.s s ) ) -s ( ( r x.s B ) -s ( A x.s B ) ) ) ) = ( ( A x.s B ) +s ( ( ( r x.s B ) -s ( A x.s B ) ) -s ( ( r x.s s ) -s ( A x.s s ) ) ) ) ) | 
						
							| 60 | 43 58 55 | addsubsassd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( A x.s B ) +s ( ( r x.s B ) -s ( A x.s B ) ) ) -s ( ( r x.s s ) -s ( A x.s s ) ) ) = ( ( A x.s B ) +s ( ( ( r x.s B ) -s ( A x.s B ) ) -s ( ( r x.s s ) -s ( A x.s s ) ) ) ) ) | 
						
							| 61 |  | pncan3s |  |-  ( ( ( A x.s B ) e. No /\ ( r x.s B ) e. No ) -> ( ( A x.s B ) +s ( ( r x.s B ) -s ( A x.s B ) ) ) = ( r x.s B ) ) | 
						
							| 62 | 43 57 61 | syl2anc |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s B ) +s ( ( r x.s B ) -s ( A x.s B ) ) ) = ( r x.s B ) ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( A x.s B ) +s ( ( r x.s B ) -s ( A x.s B ) ) ) -s ( ( r x.s s ) -s ( A x.s s ) ) ) = ( ( r x.s B ) -s ( ( r x.s s ) -s ( A x.s s ) ) ) ) | 
						
							| 64 | 59 60 63 | 3eqtr2d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s B ) -s ( ( ( r x.s s ) -s ( A x.s s ) ) -s ( ( r x.s B ) -s ( A x.s B ) ) ) ) = ( ( r x.s B ) -s ( ( r x.s s ) -s ( A x.s s ) ) ) ) | 
						
							| 65 | 47 53 | subscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r -s A ) e. No ) | 
						
							| 66 | 65 51 56 | subsdid |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r -s A ) x.s ( s -s B ) ) = ( ( ( r -s A ) x.s s ) -s ( ( r -s A ) x.s B ) ) ) | 
						
							| 67 | 47 53 51 | subsdird |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r -s A ) x.s s ) = ( ( r x.s s ) -s ( A x.s s ) ) ) | 
						
							| 68 | 47 53 56 | subsdird |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r -s A ) x.s B ) = ( ( r x.s B ) -s ( A x.s B ) ) ) | 
						
							| 69 | 67 68 | oveq12d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r -s A ) x.s s ) -s ( ( r -s A ) x.s B ) ) = ( ( ( r x.s s ) -s ( A x.s s ) ) -s ( ( r x.s B ) -s ( A x.s B ) ) ) ) | 
						
							| 70 | 66 69 | eqtrd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r -s A ) x.s ( s -s B ) ) = ( ( ( r x.s s ) -s ( A x.s s ) ) -s ( ( r x.s B ) -s ( A x.s B ) ) ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) = ( ( A x.s B ) -s ( ( ( r x.s s ) -s ( A x.s s ) ) -s ( ( r x.s B ) -s ( A x.s B ) ) ) ) ) | 
						
							| 72 | 57 54 52 | addsubsassd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( r x.s B ) +s ( ( A x.s s ) -s ( r x.s s ) ) ) ) | 
						
							| 73 | 57 52 54 | subsubs2d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) -s ( ( r x.s s ) -s ( A x.s s ) ) ) = ( ( r x.s B ) +s ( ( A x.s s ) -s ( r x.s s ) ) ) ) | 
						
							| 74 | 72 73 | eqtr4d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( r x.s B ) -s ( ( r x.s s ) -s ( A x.s s ) ) ) ) | 
						
							| 75 | 64 71 74 | 3eqtr4rd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) | 
						
							| 76 | 75 | eqeq2d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) ) | 
						
							| 77 | 76 | 2rexbidva |  |-  ( ph -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) ) ) | 
						
							| 78 | 77 | abbidv |  |-  ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } = { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) | 
						
							| 79 | 42 78 | uneq12d |  |-  ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) = ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) ) | 
						
							| 80 | 7 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> A e. No ) | 
						
							| 81 | 49 | sselda |  |-  ( ( ph /\ u e. S ) -> u e. No ) | 
						
							| 82 | 81 | adantrl |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> u e. No ) | 
						
							| 83 | 80 82 | mulscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s u ) e. No ) | 
						
							| 84 | 10 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) e. No ) | 
						
							| 85 | 83 84 | subscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A x.s u ) -s ( A x.s B ) ) e. No ) | 
						
							| 86 | 13 | sselda |  |-  ( ( ph /\ t e. L ) -> t e. No ) | 
						
							| 87 | 86 | adantrr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> t e. No ) | 
						
							| 88 | 87 82 | mulscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s u ) e. No ) | 
						
							| 89 | 9 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> B e. No ) | 
						
							| 90 | 87 89 | mulscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s B ) e. No ) | 
						
							| 91 | 85 88 90 | subsubs2d |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( A x.s u ) -s ( A x.s B ) ) -s ( ( t x.s u ) -s ( t x.s B ) ) ) = ( ( ( A x.s u ) -s ( A x.s B ) ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) ) | 
						
							| 92 | 90 88 | subscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) -s ( t x.s u ) ) e. No ) | 
						
							| 93 | 83 92 84 | addsubsd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) -s ( A x.s B ) ) = ( ( ( A x.s u ) -s ( A x.s B ) ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) ) | 
						
							| 94 | 91 93 | eqtr4d |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( A x.s u ) -s ( A x.s B ) ) -s ( ( t x.s u ) -s ( t x.s B ) ) ) = ( ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) -s ( A x.s B ) ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A x.s B ) +s ( ( ( A x.s u ) -s ( A x.s B ) ) -s ( ( t x.s u ) -s ( t x.s B ) ) ) ) = ( ( A x.s B ) +s ( ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) -s ( A x.s B ) ) ) ) | 
						
							| 96 | 83 92 | addscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) e. No ) | 
						
							| 97 |  | pncan3s |  |-  ( ( ( A x.s B ) e. No /\ ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) e. No ) -> ( ( A x.s B ) +s ( ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) -s ( A x.s B ) ) ) = ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) ) | 
						
							| 98 | 84 96 97 | syl2anc |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A x.s B ) +s ( ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) -s ( A x.s B ) ) ) = ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) ) | 
						
							| 99 | 95 98 | eqtrd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A x.s B ) +s ( ( ( A x.s u ) -s ( A x.s B ) ) -s ( ( t x.s u ) -s ( t x.s B ) ) ) ) = ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) ) | 
						
							| 100 | 82 89 | subscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( u -s B ) e. No ) | 
						
							| 101 | 80 87 100 | subsdird |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A -s t ) x.s ( u -s B ) ) = ( ( A x.s ( u -s B ) ) -s ( t x.s ( u -s B ) ) ) ) | 
						
							| 102 | 80 82 89 | subsdid |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s ( u -s B ) ) = ( ( A x.s u ) -s ( A x.s B ) ) ) | 
						
							| 103 | 87 82 89 | subsdid |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s ( u -s B ) ) = ( ( t x.s u ) -s ( t x.s B ) ) ) | 
						
							| 104 | 102 103 | oveq12d |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A x.s ( u -s B ) ) -s ( t x.s ( u -s B ) ) ) = ( ( ( A x.s u ) -s ( A x.s B ) ) -s ( ( t x.s u ) -s ( t x.s B ) ) ) ) | 
						
							| 105 | 101 104 | eqtrd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A -s t ) x.s ( u -s B ) ) = ( ( ( A x.s u ) -s ( A x.s B ) ) -s ( ( t x.s u ) -s ( t x.s B ) ) ) ) | 
						
							| 106 | 105 | oveq2d |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) = ( ( A x.s B ) +s ( ( ( A x.s u ) -s ( A x.s B ) ) -s ( ( t x.s u ) -s ( t x.s B ) ) ) ) ) | 
						
							| 107 | 90 83 | addscomd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) +s ( A x.s u ) ) = ( ( A x.s u ) +s ( t x.s B ) ) ) | 
						
							| 108 | 107 | oveq1d |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) = ( ( ( A x.s u ) +s ( t x.s B ) ) -s ( t x.s u ) ) ) | 
						
							| 109 | 83 90 88 | addsubsassd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( A x.s u ) +s ( t x.s B ) ) -s ( t x.s u ) ) = ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) ) | 
						
							| 110 | 108 109 | eqtrd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) = ( ( A x.s u ) +s ( ( t x.s B ) -s ( t x.s u ) ) ) ) | 
						
							| 111 | 99 106 110 | 3eqtr4rd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) | 
						
							| 112 | 111 | eqeq2d |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) | 
						
							| 113 | 112 | 2rexbidva |  |-  ( ph -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) ) ) | 
						
							| 114 | 113 | abbidv |  |-  ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } = { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } ) | 
						
							| 115 | 45 | sselda |  |-  ( ( ph /\ v e. R ) -> v e. No ) | 
						
							| 116 | 115 | adantrr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> v e. No ) | 
						
							| 117 | 9 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> B e. No ) | 
						
							| 118 | 116 117 | mulscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s B ) e. No ) | 
						
							| 119 | 20 | sselda |  |-  ( ( ph /\ w e. M ) -> w e. No ) | 
						
							| 120 | 119 | adantrl |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> w e. No ) | 
						
							| 121 | 116 120 | mulscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s w ) e. No ) | 
						
							| 122 | 118 121 | subscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) -s ( v x.s w ) ) e. No ) | 
						
							| 123 | 10 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) e. No ) | 
						
							| 124 | 7 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> A e. No ) | 
						
							| 125 | 124 120 | mulscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s w ) e. No ) | 
						
							| 126 | 122 123 125 | subsubs2d |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) -s ( v x.s w ) ) -s ( ( A x.s B ) -s ( A x.s w ) ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( ( A x.s w ) -s ( A x.s B ) ) ) ) | 
						
							| 127 | 122 125 123 | addsubsassd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) -s ( A x.s B ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( ( A x.s w ) -s ( A x.s B ) ) ) ) | 
						
							| 128 | 126 127 | eqtr4d |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) -s ( v x.s w ) ) -s ( ( A x.s B ) -s ( A x.s w ) ) ) = ( ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) -s ( A x.s B ) ) ) | 
						
							| 129 | 128 | oveq2d |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( A x.s B ) +s ( ( ( v x.s B ) -s ( v x.s w ) ) -s ( ( A x.s B ) -s ( A x.s w ) ) ) ) = ( ( A x.s B ) +s ( ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) -s ( A x.s B ) ) ) ) | 
						
							| 130 | 122 125 | addscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) e. No ) | 
						
							| 131 |  | pncan3s |  |-  ( ( ( A x.s B ) e. No /\ ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) e. No ) -> ( ( A x.s B ) +s ( ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) -s ( A x.s B ) ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) ) | 
						
							| 132 | 123 130 131 | syl2anc |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( A x.s B ) +s ( ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) -s ( A x.s B ) ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) ) | 
						
							| 133 | 129 132 | eqtrd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( A x.s B ) +s ( ( ( v x.s B ) -s ( v x.s w ) ) -s ( ( A x.s B ) -s ( A x.s w ) ) ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) ) | 
						
							| 134 | 117 120 | subscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( B -s w ) e. No ) | 
						
							| 135 | 116 124 134 | subsdird |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v -s A ) x.s ( B -s w ) ) = ( ( v x.s ( B -s w ) ) -s ( A x.s ( B -s w ) ) ) ) | 
						
							| 136 | 116 117 120 | subsdid |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s ( B -s w ) ) = ( ( v x.s B ) -s ( v x.s w ) ) ) | 
						
							| 137 | 124 117 120 | subsdid |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s ( B -s w ) ) = ( ( A x.s B ) -s ( A x.s w ) ) ) | 
						
							| 138 | 136 137 | oveq12d |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s ( B -s w ) ) -s ( A x.s ( B -s w ) ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) -s ( ( A x.s B ) -s ( A x.s w ) ) ) ) | 
						
							| 139 | 135 138 | eqtrd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v -s A ) x.s ( B -s w ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) -s ( ( A x.s B ) -s ( A x.s w ) ) ) ) | 
						
							| 140 | 139 | oveq2d |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) = ( ( A x.s B ) +s ( ( ( v x.s B ) -s ( v x.s w ) ) -s ( ( A x.s B ) -s ( A x.s w ) ) ) ) ) | 
						
							| 141 | 118 125 121 | addsubsd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) ) | 
						
							| 142 | 133 140 141 | 3eqtr4rd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) | 
						
							| 143 | 142 | eqeq2d |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) ) | 
						
							| 144 | 143 | 2rexbidva |  |-  ( ph -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) ) ) | 
						
							| 145 | 144 | abbidv |  |-  ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } = { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) | 
						
							| 146 | 114 145 | uneq12d |  |-  ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) = ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) ) | 
						
							| 147 | 79 146 | oveq12d |  |-  ( ph -> ( ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) |s ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) = ( ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) |s ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) ) ) | 
						
							| 148 | 5 147 | eqtrd |  |-  ( ph -> ( A x.s B ) = ( ( { a | E. p e. L E. q e. M a = ( ( A x.s B ) -s ( ( A -s p ) x.s ( B -s q ) ) ) } u. { b | E. r e. R E. s e. S b = ( ( A x.s B ) -s ( ( r -s A ) x.s ( s -s B ) ) ) } ) |s ( { c | E. t e. L E. u e. S c = ( ( A x.s B ) +s ( ( A -s t ) x.s ( u -s B ) ) ) } u. { d | E. v e. R E. w e. M d = ( ( A x.s B ) +s ( ( v -s A ) x.s ( B -s w ) ) ) } ) ) ) |