Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | mzpincl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mzpval | |
|
2 | mzpclall | |
|
3 | intss1 | |
|
4 | 2 3 | syl | |
5 | simpr | |
|
6 | simplr | |
|
7 | mzpcl1 | |
|
8 | 5 6 7 | syl2anc | |
9 | 8 | ralrimiva | |
10 | ovex | |
|
11 | vsnex | |
|
12 | 10 11 | xpex | |
13 | 12 | elint2 | |
14 | 9 13 | sylibr | |
15 | 14 | ralrimiva | |
16 | simpr | |
|
17 | simplr | |
|
18 | mzpcl2 | |
|
19 | 16 17 18 | syl2anc | |
20 | 19 | ralrimiva | |
21 | 10 | mptex | |
22 | 21 | elint2 | |
23 | 20 22 | sylibr | |
24 | 23 | ralrimiva | |
25 | 15 24 | jca | |
26 | vex | |
|
27 | 26 | elint2 | |
28 | vex | |
|
29 | 28 | elint2 | |
30 | mzpcl34 | |
|
31 | 30 | 3expib | |
32 | 31 | ralimia | |
33 | r19.26 | |
|
34 | r19.26 | |
|
35 | 32 33 34 | 3imtr3i | |
36 | 27 29 35 | syl2anb | |
37 | ovex | |
|
38 | 37 | elint2 | |
39 | ovex | |
|
40 | 39 | elint2 | |
41 | 38 40 | anbi12i | |
42 | 36 41 | sylibr | |
43 | 42 | a1i | |
44 | 43 | ralrimivv | |
45 | 4 25 44 | jca32 | |
46 | elmzpcl | |
|
47 | 45 46 | mpbird | |
48 | 1 47 | eqeltrd | |