Metamath Proof Explorer


Theorem mzpincl

Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpincl VVmzPolyVmzPolyCldV

Proof

Step Hyp Ref Expression
1 mzpval VVmzPolyV=mzPolyCldV
2 mzpclall VVVmzPolyCldV
3 intss1 VmzPolyCldVmzPolyCldVV
4 2 3 syl VVmzPolyCldVV
5 simpr VVfamzPolyCldVamzPolyCldV
6 simplr VVfamzPolyCldVf
7 mzpcl1 amzPolyCldVfV×fa
8 5 6 7 syl2anc VVfamzPolyCldVV×fa
9 8 ralrimiva VVfamzPolyCldVV×fa
10 ovex VV
11 vsnex fV
12 10 11 xpex V×fV
13 12 elint2 V×fmzPolyCldVamzPolyCldVV×fa
14 9 13 sylibr VVfV×fmzPolyCldV
15 14 ralrimiva VVfV×fmzPolyCldV
16 simpr VVfVamzPolyCldVamzPolyCldV
17 simplr VVfVamzPolyCldVfV
18 mzpcl2 amzPolyCldVfVgVgfa
19 16 17 18 syl2anc VVfVamzPolyCldVgVgfa
20 19 ralrimiva VVfVamzPolyCldVgVgfa
21 10 mptex gVgfV
22 21 elint2 gVgfmzPolyCldVamzPolyCldVgVgfa
23 20 22 sylibr VVfVgVgfmzPolyCldV
24 23 ralrimiva VVfVgVgfmzPolyCldV
25 15 24 jca VVfV×fmzPolyCldVfVgVgfmzPolyCldV
26 vex fV
27 26 elint2 fmzPolyCldVamzPolyCldVfa
28 vex gV
29 28 elint2 gmzPolyCldVamzPolyCldVga
30 mzpcl34 amzPolyCldVfagaf+fgaf×fga
31 30 3expib amzPolyCldVfagaf+fgaf×fga
32 31 ralimia amzPolyCldVfagaamzPolyCldVf+fgaf×fga
33 r19.26 amzPolyCldVfagaamzPolyCldVfaamzPolyCldVga
34 r19.26 amzPolyCldVf+fgaf×fgaamzPolyCldVf+fgaamzPolyCldVf×fga
35 32 33 34 3imtr3i amzPolyCldVfaamzPolyCldVgaamzPolyCldVf+fgaamzPolyCldVf×fga
36 27 29 35 syl2anb fmzPolyCldVgmzPolyCldVamzPolyCldVf+fgaamzPolyCldVf×fga
37 ovex f+fgV
38 37 elint2 f+fgmzPolyCldVamzPolyCldVf+fga
39 ovex f×fgV
40 39 elint2 f×fgmzPolyCldVamzPolyCldVf×fga
41 38 40 anbi12i f+fgmzPolyCldVf×fgmzPolyCldVamzPolyCldVf+fgaamzPolyCldVf×fga
42 36 41 sylibr fmzPolyCldVgmzPolyCldVf+fgmzPolyCldVf×fgmzPolyCldV
43 42 a1i VVfmzPolyCldVgmzPolyCldVf+fgmzPolyCldVf×fgmzPolyCldV
44 43 ralrimivv VVfmzPolyCldVgmzPolyCldVf+fgmzPolyCldVf×fgmzPolyCldV
45 4 25 44 jca32 VVmzPolyCldVVfV×fmzPolyCldVfVgVgfmzPolyCldVfmzPolyCldVgmzPolyCldVf+fgmzPolyCldVf×fgmzPolyCldV
46 elmzpcl VVmzPolyCldVmzPolyCldVmzPolyCldVVfV×fmzPolyCldVfVgVgfmzPolyCldVfmzPolyCldVgmzPolyCldVf+fgmzPolyCldVf×fgmzPolyCldV
47 45 46 mpbird VVmzPolyCldVmzPolyCldV
48 1 47 eqeltrd VVmzPolyVmzPolyCldV