Metamath Proof Explorer


Theorem mzpmfp

Description: Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Assertion mzpmfp mzPolyI=ranIevalring

Proof

Step Hyp Ref Expression
1 zringbas =Basering
2 eqid Ievalring=Ievalring
3 2 1 evlval Ievalring=IevalSubring
4 3 rneqi ranIevalring=ranIevalSubring
5 simpl IVfIV
6 zringcrng ringCRing
7 6 a1i IVfringCRing
8 zringring ringRing
9 1 subrgid ringRingSubRingring
10 8 9 ax-mp SubRingring
11 10 a1i IVfSubRingring
12 simpr IVff
13 1 4 5 7 11 12 mpfconst IVfI×franIevalring
14 simpl IVfIIV
15 6 a1i IVfIringCRing
16 10 a1i IVfISubRingring
17 simpr IVfIfI
18 1 4 14 15 16 17 mpfproj IVfIgIgfranIevalring
19 simp2r IVf:IfranIevalringg:IgranIevalringfranIevalring
20 simp3r IVf:IfranIevalringg:IgranIevalringgranIevalring
21 zringplusg +=+ring
22 4 21 mpfaddcl franIevalringgranIevalringf+fgranIevalring
23 19 20 22 syl2anc IVf:IfranIevalringg:IgranIevalringf+fgranIevalring
24 zringmulr ×=ring
25 4 24 mpfmulcl franIevalringgranIevalringf×fgranIevalring
26 19 20 25 syl2anc IVf:IfranIevalringg:IgranIevalringf×fgranIevalring
27 eleq1 b=I×fbranIevalringI×franIevalring
28 eleq1 b=gIgfbranIevalringgIgfranIevalring
29 eleq1 b=fbranIevalringfranIevalring
30 eleq1 b=gbranIevalringgranIevalring
31 eleq1 b=f+fgbranIevalringf+fgranIevalring
32 eleq1 b=f×fgbranIevalringf×fgranIevalring
33 eleq1 b=abranIevalringaranIevalring
34 13 18 23 26 27 28 29 30 31 32 33 mzpindd IVamzPolyIaranIevalring
35 simprlr IVaranIevalringxranIevalringxmzPolyIyranIevalringymzPolyIxmzPolyI
36 simprrr IVaranIevalringxranIevalringxmzPolyIyranIevalringymzPolyIymzPolyI
37 mzpadd xmzPolyIymzPolyIx+fymzPolyI
38 35 36 37 syl2anc IVaranIevalringxranIevalringxmzPolyIyranIevalringymzPolyIx+fymzPolyI
39 mzpmul xmzPolyIymzPolyIx×fymzPolyI
40 35 36 39 syl2anc IVaranIevalringxranIevalringxmzPolyIyranIevalringymzPolyIx×fymzPolyI
41 eleq1 b=I×xbmzPolyII×xmzPolyI
42 eleq1 b=yIyxbmzPolyIyIyxmzPolyI
43 eleq1 b=xbmzPolyIxmzPolyI
44 eleq1 b=ybmzPolyIymzPolyI
45 eleq1 b=x+fybmzPolyIx+fymzPolyI
46 eleq1 b=x×fybmzPolyIx×fymzPolyI
47 eleq1 b=abmzPolyIamzPolyI
48 mzpconst IVxI×xmzPolyI
49 48 adantlr IVaranIevalringxI×xmzPolyI
50 mzpproj IVxIyIyxmzPolyI
51 50 adantlr IVaranIevalringxIyIyxmzPolyI
52 simpr IVaranIevalringaranIevalring
53 1 21 24 4 38 40 41 42 43 44 45 46 47 49 51 52 mpfind IVaranIevalringamzPolyI
54 34 53 impbida IVamzPolyIaranIevalring
55 54 eqrdv IVmzPolyI=ranIevalring
56 fvprc ¬IVmzPolyI=
57 df-evl eval=aV,bVaevalSubbBaseb
58 57 reldmmpo Reldomeval
59 58 ovprc1 ¬IVIevalring=
60 59 rneqd ¬IVranIevalring=ran
61 rn0 ran=
62 60 61 eqtrdi ¬IVranIevalring=
63 56 62 eqtr4d ¬IVmzPolyI=ranIevalring
64 55 63 pm2.61i mzPolyI=ranIevalring