Metamath Proof Explorer


Theorem mpfproj

Description: Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypotheses mpfconst.b B=BaseS
mpfconst.q Q=ranIevalSubSR
mpfconst.i φIV
mpfconst.s φSCRing
mpfconst.r φRSubRingS
mpfproj.j φJI
Assertion mpfproj φfBIfJQ

Proof

Step Hyp Ref Expression
1 mpfconst.b B=BaseS
2 mpfconst.q Q=ranIevalSubSR
3 mpfconst.i φIV
4 mpfconst.s φSCRing
5 mpfconst.r φRSubRingS
6 mpfproj.j φJI
7 eqid IevalSubSR=IevalSubSR
8 eqid ImVarS𝑠R=ImVarS𝑠R
9 eqid S𝑠R=S𝑠R
10 7 8 9 1 3 4 5 6 evlsvar φIevalSubSRImVarS𝑠RJ=fBIfJ
11 eqid ImPolyS𝑠R=ImPolyS𝑠R
12 eqid S𝑠BI=S𝑠BI
13 7 11 9 12 1 evlsrhm IVSCRingRSubRingSIevalSubSRImPolyS𝑠RRingHomS𝑠BI
14 3 4 5 13 syl3anc φIevalSubSRImPolyS𝑠RRingHomS𝑠BI
15 eqid BaseImPolyS𝑠R=BaseImPolyS𝑠R
16 eqid BaseS𝑠BI=BaseS𝑠BI
17 15 16 rhmf IevalSubSRImPolyS𝑠RRingHomS𝑠BIIevalSubSR:BaseImPolyS𝑠RBaseS𝑠BI
18 ffn IevalSubSR:BaseImPolyS𝑠RBaseS𝑠BIIevalSubSRFnBaseImPolyS𝑠R
19 14 17 18 3syl φIevalSubSRFnBaseImPolyS𝑠R
20 9 subrgring RSubRingSS𝑠RRing
21 5 20 syl φS𝑠RRing
22 11 8 15 3 21 6 mvrcl φImVarS𝑠RJBaseImPolyS𝑠R
23 fnfvelrn IevalSubSRFnBaseImPolyS𝑠RImVarS𝑠RJBaseImPolyS𝑠RIevalSubSRImVarS𝑠RJranIevalSubSR
24 19 22 23 syl2anc φIevalSubSRImVarS𝑠RJranIevalSubSR
25 24 2 eleqtrrdi φIevalSubSRImVarS𝑠RJQ
26 10 25 eqeltrrd φfBIfJQ