Metamath Proof Explorer


Theorem neicvgmex

Description: If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses neicvg.o O=iV,jVk𝒫jiljmi|lkm
neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
neicvg.d D=PB
neicvg.f F=𝒫BOB
neicvg.g G=BO𝒫B
neicvg.h H=FDG
neicvg.r φNHM
Assertion neicvgmex φM𝒫𝒫BB

Proof

Step Hyp Ref Expression
1 neicvg.o O=iV,jVk𝒫jiljmi|lkm
2 neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
3 neicvg.d D=PB
4 neicvg.f F=𝒫BOB
5 neicvg.g G=BO𝒫B
6 neicvg.h H=FDG
7 neicvg.r φNHM
8 3 6 7 neicvgbex φBV
9 pwexg BV𝒫BV
10 9 adantl φBV𝒫BV
11 simpr φBVBV
12 1 10 11 4 fsovf1od φBVF:𝒫B𝒫B1-1 onto𝒫𝒫BB
13 f1ofn F:𝒫B𝒫B1-1 onto𝒫𝒫BBFFn𝒫B𝒫B
14 12 13 syl φBVFFn𝒫B𝒫B
15 2 3 11 dssmapf1od φBVD:𝒫B𝒫B1-1 onto𝒫B𝒫B
16 f1of D:𝒫B𝒫B1-1 onto𝒫B𝒫BD:𝒫B𝒫B𝒫B𝒫B
17 15 16 syl φBVD:𝒫B𝒫B𝒫B𝒫B
18 1 11 10 5 fsovfd φBVG:𝒫𝒫BB𝒫B𝒫B
19 6 breqi NHMNFDGM
20 7 19 sylib φNFDGM
21 20 adantr φBVNFDGM
22 14 17 18 21 brcofffn φBVNGGNGNDDGNDGNFM
23 8 22 mpdan φNGGNGNDDGNDGNFM
24 23 simp3d φDGNFM
25 1 4 24 ntrneinex φM𝒫𝒫BB