Metamath Proof Explorer


Theorem neindisj2

Description: A point P belongs to the closure of a set S iff every neighborhood of P meets S . (Contributed by FL, 15-Sep-2013)

Ref Expression
Hypothesis tpnei.1 X=J
Assertion neindisj2 JTopSXPXPclsJSnneiJPnS

Proof

Step Hyp Ref Expression
1 tpnei.1 X=J
2 1 elcls JTopSXPXPclsJSxJPxxS
3 1 isneip JTopPXnneiJPnXxJPxxn
4 r19.29r xJPxxnxJPxxSxJPxxnPxxS
5 pm3.35 PxPxxSxS
6 ssrin xnxSnS
7 sseq2 nS=xSnSxS
8 ss0 xSxS=
9 7 8 syl6bi nS=xSnSxS=
10 6 9 syl5com xnnS=xS=
11 10 necon3d xnxSnS
12 5 11 syl5com PxPxxSxnnS
13 12 ex PxPxxSxnnS
14 13 com23 PxxnPxxSnS
15 14 imp31 PxxnPxxSnS
16 15 rexlimivw xJPxxnPxxSnS
17 4 16 syl xJPxxnxJPxxSnS
18 17 ex xJPxxnxJPxxSnS
19 18 adantl nXxJPxxnxJPxxSnS
20 3 19 syl6bi JTopPXnneiJPxJPxxSnS
21 20 3adant2 JTopSXPXnneiJPxJPxxSnS
22 21 com23 JTopSXPXxJPxxSnneiJPnS
23 22 imp JTopSXPXxJPxxSnneiJPnS
24 23 ralrimiv JTopSXPXxJPxxSnneiJPnS
25 opnneip JTopxJPxxneiJP
26 ineq1 n=xnS=xS
27 26 neeq1d n=xnSxS
28 27 rspccva nneiJPnSxneiJPxS
29 idd PXJTopxJPxSXxSxS
30 29 3exp PXJTopxJPxSXxSxS
31 30 com14 xSJTopxJPxSXPXxS
32 28 31 syl nneiJPnSxneiJPJTopxJPxSXPXxS
33 32 ex nneiJPnSxneiJPJTopxJPxSXPXxS
34 33 com3l xneiJPJTopxJPxnneiJPnSSXPXxS
35 25 34 mpcom JTopxJPxnneiJPnSSXPXxS
36 35 3expia JTopxJPxnneiJPnSSXPXxS
37 36 com25 JTopxJPXnneiJPnSSXPxxS
38 37 ex JTopxJPXnneiJPnSSXPxxS
39 38 com25 JTopSXPXnneiJPnSxJPxxS
40 39 3imp1 JTopSXPXnneiJPnSxJPxxS
41 40 ralrimiv JTopSXPXnneiJPnSxJPxxS
42 24 41 impbida JTopSXPXxJPxxSnneiJPnS
43 2 42 bitrd JTopSXPXPclsJSnneiJPnS