Metamath Proof Explorer


Theorem nfermltl8rev

Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer p (for example 9, see 9fppr8 ) so that " p is prime" does not follow from 8 ^ p == 8 (mod p ). (Contributed by AV, 3-Jun-2023)

Ref Expression
Assertion nfermltl8rev p3¬8pmodp=8modpp

Proof

Step Hyp Ref Expression
1 9nn 9
2 1 elexi 9V
3 eleq1 p=9p393
4 oveq2 p=98p=89
5 id p=9p=9
6 4 5 oveq12d p=98pmodp=89mod9
7 oveq2 p=98modp=8mod9
8 6 7 eqeq12d p=98pmodp=8modp89mod9=8mod9
9 eleq1 p=9p9
10 8 9 imbi12d p=98pmodp=8modpp89mod9=8mod99
11 10 notbid p=9¬8pmodp=8modpp¬89mod9=8mod99
12 3 11 anbi12d p=9p3¬8pmodp=8modpp93¬89mod9=8mod99
13 3z 3
14 1 nnzi 9
15 3re 3
16 9re 9
17 3lt9 3<9
18 15 16 17 ltleii 39
19 eluz2 933939
20 13 14 18 19 mpbir3an 93
21 8nn 8
22 8nn0 80
23 0z 0
24 1nn0 10
25 8exp8mod9 88mod9=1
26 1re 1
27 nnrp 99+
28 1 27 ax-mp 9+
29 0le1 01
30 1lt9 1<9
31 modid 19+011<91mod9=1
32 26 28 29 30 31 mp4an 1mod9=1
33 25 32 eqtr4i 88mod9=1mod9
34 8p1e9 8+1=9
35 8cn 8
36 35 addlidi 0+8=8
37 9cn 9
38 37 mul02i 09=0
39 38 oveq1i 09+8=0+8
40 35 mullidi 18=8
41 36 39 40 3eqtr4i 09+8=18
42 1 21 22 23 24 22 33 34 41 modxp1i 89mod9=8mod9
43 9nprm ¬9
44 42 43 pm3.2i 89mod9=8mod9¬9
45 annim 89mod9=8mod9¬9¬89mod9=8mod99
46 44 45 mpbi ¬89mod9=8mod99
47 20 46 pm3.2i 93¬89mod9=8mod99
48 2 12 47 ceqsexv2d pp3¬8pmodp=8modpp
49 df-rex p3¬8pmodp=8modpppp3¬8pmodp=8modpp
50 48 49 mpbir p3¬8pmodp=8modpp