Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer p (for example 9, see 9fppr8 ) so that " p is prime" does not follow from 8 ^ p == 8 (mod p ). (Contributed by AV, 3-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nfermltl8rev | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn | |
|
2 | 1 | elexi | |
3 | eleq1 | |
|
4 | oveq2 | |
|
5 | id | |
|
6 | 4 5 | oveq12d | |
7 | oveq2 | |
|
8 | 6 7 | eqeq12d | |
9 | eleq1 | |
|
10 | 8 9 | imbi12d | |
11 | 10 | notbid | |
12 | 3 11 | anbi12d | |
13 | 3z | |
|
14 | 1 | nnzi | |
15 | 3re | |
|
16 | 9re | |
|
17 | 3lt9 | |
|
18 | 15 16 17 | ltleii | |
19 | eluz2 | |
|
20 | 13 14 18 19 | mpbir3an | |
21 | 8nn | |
|
22 | 8nn0 | |
|
23 | 0z | |
|
24 | 1nn0 | |
|
25 | 8exp8mod9 | |
|
26 | 1re | |
|
27 | nnrp | |
|
28 | 1 27 | ax-mp | |
29 | 0le1 | |
|
30 | 1lt9 | |
|
31 | modid | |
|
32 | 26 28 29 30 31 | mp4an | |
33 | 25 32 | eqtr4i | |
34 | 8p1e9 | |
|
35 | 8cn | |
|
36 | 35 | addlidi | |
37 | 9cn | |
|
38 | 37 | mul02i | |
39 | 38 | oveq1i | |
40 | 35 | mullidi | |
41 | 36 39 40 | 3eqtr4i | |
42 | 1 21 22 23 24 22 33 34 41 | modxp1i | |
43 | 9nprm | |
|
44 | 42 43 | pm3.2i | |
45 | annim | |
|
46 | 44 45 | mpbi | |
47 | 20 46 | pm3.2i | |
48 | 2 12 47 | ceqsexv2d | |
49 | df-rex | |
|
50 | 48 49 | mpbir | |