Metamath Proof Explorer


Theorem nmfnleub2

Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnleub2 T:A0AxTxAnormxnormfnTA

Proof

Step Hyp Ref Expression
1 normcl xnormx
2 1 ad2antlr T:A0Axnormx1normx
3 simpllr T:A0Axnormx1A0A
4 simpr T:A0Axnormx1normx1
5 1re 1
6 lemul2a normx1A0Anormx1AnormxA1
7 5 6 mp3anl2 normxA0Anormx1AnormxA1
8 2 3 4 7 syl21anc T:A0Axnormx1AnormxA1
9 ax-1rid AA1=A
10 9 ad2antrl T:A0AA1=A
11 10 ad2antrr T:A0Axnormx1A1=A
12 8 11 breqtrd T:A0Axnormx1AnormxA
13 ffvelcdm T:xTx
14 13 abscld T:xTx
15 14 adantlr T:A0AxTx
16 remulcl AnormxAnormx
17 1 16 sylan2 AxAnormx
18 17 adantlr A0AxAnormx
19 18 adantll T:A0AxAnormx
20 simplrl T:A0AxA
21 letr TxAnormxATxAnormxAnormxATxA
22 15 19 20 21 syl3anc T:A0AxTxAnormxAnormxATxA
23 22 adantr T:A0Axnormx1TxAnormxAnormxATxA
24 12 23 mpan2d T:A0Axnormx1TxAnormxTxA
25 24 ex T:A0Axnormx1TxAnormxTxA
26 25 com23 T:A0AxTxAnormxnormx1TxA
27 26 ralimdva T:A0AxTxAnormxxnormx1TxA
28 27 imp T:A0AxTxAnormxxnormx1TxA
29 rexr AA*
30 29 adantr A0AA*
31 nmfnleub T:A*normfnTAxnormx1TxA
32 30 31 sylan2 T:A0AnormfnTAxnormx1TxA
33 32 biimpar T:A0Axnormx1TxAnormfnTA
34 28 33 syldan T:A0AxTxAnormxnormfnTA
35 34 3impa T:A0AxTxAnormxnormfnTA