Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | nmfnleub2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normcl | |
|
2 | 1 | ad2antlr | |
3 | simpllr | |
|
4 | simpr | |
|
5 | 1re | |
|
6 | lemul2a | |
|
7 | 5 6 | mp3anl2 | |
8 | 2 3 4 7 | syl21anc | |
9 | ax-1rid | |
|
10 | 9 | ad2antrl | |
11 | 10 | ad2antrr | |
12 | 8 11 | breqtrd | |
13 | ffvelcdm | |
|
14 | 13 | abscld | |
15 | 14 | adantlr | |
16 | remulcl | |
|
17 | 1 16 | sylan2 | |
18 | 17 | adantlr | |
19 | 18 | adantll | |
20 | simplrl | |
|
21 | letr | |
|
22 | 15 19 20 21 | syl3anc | |
23 | 22 | adantr | |
24 | 12 23 | mpan2d | |
25 | 24 | ex | |
26 | 25 | com23 | |
27 | 26 | ralimdva | |
28 | 27 | imp | |
29 | rexr | |
|
30 | 29 | adantr | |
31 | nmfnleub | |
|
32 | 30 31 | sylan2 | |
33 | 32 | biimpar | |
34 | 28 33 | syldan | |
35 | 34 | 3impa | |