Metamath Proof Explorer


Theorem nmfnleub2

Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnleub2 T : A 0 A x T x A norm x norm fn T A

Proof

Step Hyp Ref Expression
1 normcl x norm x
2 1 ad2antlr T : A 0 A x norm x 1 norm x
3 simpllr T : A 0 A x norm x 1 A 0 A
4 simpr T : A 0 A x norm x 1 norm x 1
5 1re 1
6 lemul2a norm x 1 A 0 A norm x 1 A norm x A 1
7 5 6 mp3anl2 norm x A 0 A norm x 1 A norm x A 1
8 2 3 4 7 syl21anc T : A 0 A x norm x 1 A norm x A 1
9 ax-1rid A A 1 = A
10 9 ad2antrl T : A 0 A A 1 = A
11 10 ad2antrr T : A 0 A x norm x 1 A 1 = A
12 8 11 breqtrd T : A 0 A x norm x 1 A norm x A
13 ffvelrn T : x T x
14 13 abscld T : x T x
15 14 adantlr T : A 0 A x T x
16 remulcl A norm x A norm x
17 1 16 sylan2 A x A norm x
18 17 adantlr A 0 A x A norm x
19 18 adantll T : A 0 A x A norm x
20 simplrl T : A 0 A x A
21 letr T x A norm x A T x A norm x A norm x A T x A
22 15 19 20 21 syl3anc T : A 0 A x T x A norm x A norm x A T x A
23 22 adantr T : A 0 A x norm x 1 T x A norm x A norm x A T x A
24 12 23 mpan2d T : A 0 A x norm x 1 T x A norm x T x A
25 24 ex T : A 0 A x norm x 1 T x A norm x T x A
26 25 com23 T : A 0 A x T x A norm x norm x 1 T x A
27 26 ralimdva T : A 0 A x T x A norm x x norm x 1 T x A
28 27 imp T : A 0 A x T x A norm x x norm x 1 T x A
29 rexr A A *
30 29 adantr A 0 A A *
31 nmfnleub T : A * norm fn T A x norm x 1 T x A
32 30 31 sylan2 T : A 0 A norm fn T A x norm x 1 T x A
33 32 biimpar T : A 0 A x norm x 1 T x A norm fn T A
34 28 33 syldan T : A 0 A x T x A norm x norm fn T A
35 34 3impa T : A 0 A x T x A norm x norm fn T A