Metamath Proof Explorer


Theorem nmobndi

Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 X=BaseSetU
nmoubi.y Y=BaseSetW
nmoubi.l L=normCVU
nmoubi.m M=normCVW
nmoubi.3 N=UnormOpOLDW
nmoubi.u UNrmCVec
nmoubi.w WNrmCVec
Assertion nmobndi T:XYNTryXLy1MTyr

Proof

Step Hyp Ref Expression
1 nmoubi.1 X=BaseSetU
2 nmoubi.y Y=BaseSetW
3 nmoubi.l L=normCVU
4 nmoubi.m M=normCVW
5 nmoubi.3 N=UnormOpOLDW
6 nmoubi.u UNrmCVec
7 nmoubi.w WNrmCVec
8 leid NTNTNT
9 breq2 r=NTNTrNTNT
10 9 rspcev NTNTNTrNTr
11 8 10 mpdan NTrNTr
12 1 2 5 nmoxr UNrmCVecWNrmCVecT:XYNT*
13 6 7 12 mp3an12 T:XYNT*
14 13 adantr T:XYrNTrNT*
15 simprl T:XYrNTrr
16 1 2 5 nmogtmnf UNrmCVecWNrmCVecT:XY−∞<NT
17 6 7 16 mp3an12 T:XY−∞<NT
18 17 adantr T:XYrNTr−∞<NT
19 simprr T:XYrNTrNTr
20 xrre NT*r−∞<NTNTrNT
21 14 15 18 19 20 syl22anc T:XYrNTrNT
22 21 rexlimdvaa T:XYrNTrNT
23 11 22 impbid2 T:XYNTrNTr
24 rexr rr*
25 1 2 3 4 5 6 7 nmoubi T:XYr*NTryXLy1MTyr
26 24 25 sylan2 T:XYrNTryXLy1MTyr
27 26 rexbidva T:XYrNTrryXLy1MTyr
28 23 27 bitrd T:XYNTryXLy1MTyr