Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmoubi.1 | |
|
nmoubi.y | |
||
nmoubi.l | |
||
nmoubi.m | |
||
nmoubi.3 | |
||
nmoubi.u | |
||
nmoubi.w | |
||
Assertion | nmobndi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoubi.1 | |
|
2 | nmoubi.y | |
|
3 | nmoubi.l | |
|
4 | nmoubi.m | |
|
5 | nmoubi.3 | |
|
6 | nmoubi.u | |
|
7 | nmoubi.w | |
|
8 | leid | |
|
9 | breq2 | |
|
10 | 9 | rspcev | |
11 | 8 10 | mpdan | |
12 | 1 2 5 | nmoxr | |
13 | 6 7 12 | mp3an12 | |
14 | 13 | adantr | |
15 | simprl | |
|
16 | 1 2 5 | nmogtmnf | |
17 | 6 7 16 | mp3an12 | |
18 | 17 | adantr | |
19 | simprr | |
|
20 | xrre | |
|
21 | 14 15 18 19 20 | syl22anc | |
22 | 21 | rexlimdvaa | |
23 | 11 22 | impbid2 | |
24 | rexr | |
|
25 | 1 2 3 4 5 6 7 | nmoubi | |
26 | 24 25 | sylan2 | |
27 | 26 | rexbidva | |
28 | 23 27 | bitrd | |