Metamath Proof Explorer


Theorem nmoubi

Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 X=BaseSetU
nmoubi.y Y=BaseSetW
nmoubi.l L=normCVU
nmoubi.m M=normCVW
nmoubi.3 N=UnormOpOLDW
nmoubi.u UNrmCVec
nmoubi.w WNrmCVec
Assertion nmoubi T:XYA*NTAxXLx1MTxA

Proof

Step Hyp Ref Expression
1 nmoubi.1 X=BaseSetU
2 nmoubi.y Y=BaseSetW
3 nmoubi.l L=normCVU
4 nmoubi.m M=normCVW
5 nmoubi.3 N=UnormOpOLDW
6 nmoubi.u UNrmCVec
7 nmoubi.w WNrmCVec
8 1 2 3 4 5 nmooval UNrmCVecWNrmCVecT:XYNT=supy|xXLx1y=MTx*<
9 6 7 8 mp3an12 T:XYNT=supy|xXLx1y=MTx*<
10 9 breq1d T:XYNTAsupy|xXLx1y=MTx*<A
11 10 adantr T:XYA*NTAsupy|xXLx1y=MTx*<A
12 2 4 nmosetre WNrmCVecT:XYy|xXLx1y=MTx
13 7 12 mpan T:XYy|xXLx1y=MTx
14 ressxr *
15 13 14 sstrdi T:XYy|xXLx1y=MTx*
16 supxrleub y|xXLx1y=MTx*A*supy|xXLx1y=MTx*<Azy|xXLx1y=MTxzA
17 15 16 sylan T:XYA*supy|xXLx1y=MTx*<Azy|xXLx1y=MTxzA
18 11 17 bitrd T:XYA*NTAzy|xXLx1y=MTxzA
19 eqeq1 y=zy=MTxz=MTx
20 19 anbi2d y=zLx1y=MTxLx1z=MTx
21 20 rexbidv y=zxXLx1y=MTxxXLx1z=MTx
22 21 ralab zy|xXLx1y=MTxzAzxXLx1z=MTxzA
23 ralcom4 xXzLx1z=MTxzAzxXLx1z=MTxzA
24 ancomst Lx1z=MTxzAz=MTxLx1zA
25 impexp z=MTxLx1zAz=MTxLx1zA
26 24 25 bitri Lx1z=MTxzAz=MTxLx1zA
27 26 albii zLx1z=MTxzAzz=MTxLx1zA
28 fvex MTxV
29 breq1 z=MTxzAMTxA
30 29 imbi2d z=MTxLx1zALx1MTxA
31 28 30 ceqsalv zz=MTxLx1zALx1MTxA
32 27 31 bitri zLx1z=MTxzALx1MTxA
33 32 ralbii xXzLx1z=MTxzAxXLx1MTxA
34 r19.23v xXLx1z=MTxzAxXLx1z=MTxzA
35 34 albii zxXLx1z=MTxzAzxXLx1z=MTxzA
36 23 33 35 3bitr3i xXLx1MTxAzxXLx1z=MTxzA
37 22 36 bitr4i zy|xXLx1y=MTxzAxXLx1MTxA
38 18 37 bitrdi T:XYA*NTAxXLx1MTxA