Description: Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0xmulclb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr | |
|
2 | simpr | |
|
3 | 2 | oveq1d | |
4 | xnn0xr | |
|
5 | 4 | ad5antlr | |
6 | simp-5r | |
|
7 | simprr | |
|
8 | 7 | ad3antrrr | |
9 | xnn0gt0 | |
|
10 | 6 8 9 | syl2anc | |
11 | xmulpnf2 | |
|
12 | 5 10 11 | syl2anc | |
13 | pnfnre2 | |
|
14 | nn0re | |
|
15 | 13 14 | mto | |
16 | 15 | a1i | |
17 | 12 16 | eqneltrd | |
18 | 3 17 | eqneltrd | |
19 | simpr | |
|
20 | 19 | oveq2d | |
21 | xnn0xr | |
|
22 | 21 | ad5antr | |
23 | simp-5l | |
|
24 | simprl | |
|
25 | 24 | ad3antrrr | |
26 | xnn0gt0 | |
|
27 | 23 25 26 | syl2anc | |
28 | xmulpnf1 | |
|
29 | 22 27 28 | syl2anc | |
30 | 15 | a1i | |
31 | 29 30 | eqneltrd | |
32 | 20 31 | eqneltrd | |
33 | xnn0nnn0pnf | |
|
34 | 33 | ad5ant15 | |
35 | 34 | ex | |
36 | xnn0nnn0pnf | |
|
37 | 36 | ad5ant25 | |
38 | 37 | ex | |
39 | 35 38 | orim12d | |
40 | pm3.13 | |
|
41 | 39 40 | impel | |
42 | 18 32 41 | mpjaodan | |
43 | 1 42 | condan | |
44 | nn0re | |
|
45 | 44 | ad2antrl | |
46 | nn0re | |
|
47 | 46 | ad2antll | |
48 | rexmul | |
|
49 | 45 47 48 | syl2anc | |
50 | nn0mulcl | |
|
51 | 50 | adantl | |
52 | 49 51 | eqeltrd | |
53 | 43 52 | impbida | |