| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|
| 2 |
|
simpr |
|
| 3 |
2
|
oveq1d |
|
| 4 |
|
xnn0xr |
|
| 5 |
4
|
ad5antlr |
|
| 6 |
|
simp-5r |
|
| 7 |
|
simprr |
|
| 8 |
7
|
ad3antrrr |
|
| 9 |
|
xnn0gt0 |
|
| 10 |
6 8 9
|
syl2anc |
|
| 11 |
|
xmulpnf2 |
|
| 12 |
5 10 11
|
syl2anc |
|
| 13 |
|
pnfnre2 |
|
| 14 |
|
nn0re |
|
| 15 |
13 14
|
mto |
|
| 16 |
15
|
a1i |
|
| 17 |
12 16
|
eqneltrd |
|
| 18 |
3 17
|
eqneltrd |
|
| 19 |
|
simpr |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
xnn0xr |
|
| 22 |
21
|
ad5antr |
|
| 23 |
|
simp-5l |
|
| 24 |
|
simprl |
|
| 25 |
24
|
ad3antrrr |
|
| 26 |
|
xnn0gt0 |
|
| 27 |
23 25 26
|
syl2anc |
|
| 28 |
|
xmulpnf1 |
|
| 29 |
22 27 28
|
syl2anc |
|
| 30 |
15
|
a1i |
|
| 31 |
29 30
|
eqneltrd |
|
| 32 |
20 31
|
eqneltrd |
|
| 33 |
|
xnn0nnn0pnf |
|
| 34 |
33
|
ad5ant15 |
|
| 35 |
34
|
ex |
|
| 36 |
|
xnn0nnn0pnf |
|
| 37 |
36
|
ad5ant25 |
|
| 38 |
37
|
ex |
|
| 39 |
35 38
|
orim12d |
|
| 40 |
|
pm3.13 |
|
| 41 |
39 40
|
impel |
|
| 42 |
18 32 41
|
mpjaodan |
|
| 43 |
1 42
|
condan |
|
| 44 |
|
nn0re |
|
| 45 |
44
|
ad2antrl |
|
| 46 |
|
nn0re |
|
| 47 |
46
|
ad2antll |
|
| 48 |
|
rexmul |
|
| 49 |
45 47 48
|
syl2anc |
|
| 50 |
|
nn0mulcl |
|
| 51 |
50
|
adantl |
|
| 52 |
49 51
|
eqeltrd |
|
| 53 |
43 52
|
impbida |
|