Metamath Proof Explorer


Theorem nn0xmulclb

Description: Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion nn0xmulclb A0*B0*A0B0A𝑒B0A0B0

Proof

Step Hyp Ref Expression
1 simplr A0*B0*A0B0A𝑒B0¬A0B0A𝑒B0
2 simpr A0*B0*A0B0A𝑒B0¬A0B0A=+∞A=+∞
3 2 oveq1d A0*B0*A0B0A𝑒B0¬A0B0A=+∞A𝑒B=+∞𝑒B
4 xnn0xr B0*B*
5 4 ad5antlr A0*B0*A0B0A𝑒B0¬A0B0A=+∞B*
6 simp-5r A0*B0*A0B0A𝑒B0¬A0B0A=+∞B0*
7 simprr A0*B0*A0B0B0
8 7 ad3antrrr A0*B0*A0B0A𝑒B0¬A0B0A=+∞B0
9 xnn0gt0 B0*B00<B
10 6 8 9 syl2anc A0*B0*A0B0A𝑒B0¬A0B0A=+∞0<B
11 xmulpnf2 B*0<B+∞𝑒B=+∞
12 5 10 11 syl2anc A0*B0*A0B0A𝑒B0¬A0B0A=+∞+∞𝑒B=+∞
13 pnfnre2 ¬+∞
14 nn0re +∞0+∞
15 13 14 mto ¬+∞0
16 15 a1i A0*B0*A0B0A𝑒B0¬A0B0A=+∞¬+∞0
17 12 16 eqneltrd A0*B0*A0B0A𝑒B0¬A0B0A=+∞¬+∞𝑒B0
18 3 17 eqneltrd A0*B0*A0B0A𝑒B0¬A0B0A=+∞¬A𝑒B0
19 simpr A0*B0*A0B0A𝑒B0¬A0B0B=+∞B=+∞
20 19 oveq2d A0*B0*A0B0A𝑒B0¬A0B0B=+∞A𝑒B=A𝑒+∞
21 xnn0xr A0*A*
22 21 ad5antr A0*B0*A0B0A𝑒B0¬A0B0B=+∞A*
23 simp-5l A0*B0*A0B0A𝑒B0¬A0B0B=+∞A0*
24 simprl A0*B0*A0B0A0
25 24 ad3antrrr A0*B0*A0B0A𝑒B0¬A0B0B=+∞A0
26 xnn0gt0 A0*A00<A
27 23 25 26 syl2anc A0*B0*A0B0A𝑒B0¬A0B0B=+∞0<A
28 xmulpnf1 A*0<AA𝑒+∞=+∞
29 22 27 28 syl2anc A0*B0*A0B0A𝑒B0¬A0B0B=+∞A𝑒+∞=+∞
30 15 a1i A0*B0*A0B0A𝑒B0¬A0B0B=+∞¬+∞0
31 29 30 eqneltrd A0*B0*A0B0A𝑒B0¬A0B0B=+∞¬A𝑒+∞0
32 20 31 eqneltrd A0*B0*A0B0A𝑒B0¬A0B0B=+∞¬A𝑒B0
33 xnn0nnn0pnf A0*¬A0A=+∞
34 33 ad5ant15 A0*B0*A0B0A𝑒B0¬A0A=+∞
35 34 ex A0*B0*A0B0A𝑒B0¬A0A=+∞
36 xnn0nnn0pnf B0*¬B0B=+∞
37 36 ad5ant25 A0*B0*A0B0A𝑒B0¬B0B=+∞
38 37 ex A0*B0*A0B0A𝑒B0¬B0B=+∞
39 35 38 orim12d A0*B0*A0B0A𝑒B0¬A0¬B0A=+∞B=+∞
40 pm3.13 ¬A0B0¬A0¬B0
41 39 40 impel A0*B0*A0B0A𝑒B0¬A0B0A=+∞B=+∞
42 18 32 41 mpjaodan A0*B0*A0B0A𝑒B0¬A0B0¬A𝑒B0
43 1 42 condan A0*B0*A0B0A𝑒B0A0B0
44 nn0re A0A
45 44 ad2antrl A0*B0*A0B0A0B0A
46 nn0re B0B
47 46 ad2antll A0*B0*A0B0A0B0B
48 rexmul ABA𝑒B=AB
49 45 47 48 syl2anc A0*B0*A0B0A0B0A𝑒B=AB
50 nn0mulcl A0B0AB0
51 50 adantl A0*B0*A0B0A0B0AB0
52 49 51 eqeltrd A0*B0*A0B0A0B0A𝑒B0
53 43 52 impbida A0*B0*A0B0A𝑒B0A0B0