Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006) (Proof shortened by Mario Carneiro, 18-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nneo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn | |
|
2 | 1 | nncnd | |
3 | 2cn | |
|
4 | 3 | a1i | |
5 | 2ne0 | |
|
6 | 5 | a1i | |
7 | 2 4 6 | divcan2d | |
8 | nncn | |
|
9 | 8 4 6 | divcan2d | |
10 | 9 | oveq1d | |
11 | 7 10 | eqtr4d | |
12 | nnz | |
|
13 | nnz | |
|
14 | zneo | |
|
15 | 12 13 14 | syl2an | |
16 | 15 | expcom | |
17 | 16 | necon2bd | |
18 | 11 17 | syl5com | |
19 | oveq1 | |
|
20 | 19 | oveq1d | |
21 | 20 | eleq1d | |
22 | oveq1 | |
|
23 | 22 | eleq1d | |
24 | 21 23 | orbi12d | |
25 | oveq1 | |
|
26 | 25 | oveq1d | |
27 | 26 | eleq1d | |
28 | oveq1 | |
|
29 | 28 | eleq1d | |
30 | 27 29 | orbi12d | |
31 | oveq1 | |
|
32 | 31 | oveq1d | |
33 | 32 | eleq1d | |
34 | oveq1 | |
|
35 | 34 | eleq1d | |
36 | 33 35 | orbi12d | |
37 | oveq1 | |
|
38 | 37 | oveq1d | |
39 | 38 | eleq1d | |
40 | oveq1 | |
|
41 | 40 | eleq1d | |
42 | 39 41 | orbi12d | |
43 | df-2 | |
|
44 | 43 | oveq1i | |
45 | 2div2e1 | |
|
46 | 44 45 | eqtr3i | |
47 | 1nn | |
|
48 | 46 47 | eqeltri | |
49 | 48 | orci | |
50 | peano2nn | |
|
51 | nncn | |
|
52 | add1p1 | |
|
53 | 52 | oveq1d | |
54 | 2cnne0 | |
|
55 | divdir | |
|
56 | 3 54 55 | mp3an23 | |
57 | 45 | oveq2i | |
58 | 56 57 | eqtrdi | |
59 | 53 58 | eqtrd | |
60 | 51 59 | syl | |
61 | 60 | eleq1d | |
62 | 50 61 | imbitrrid | |
63 | 62 | orim2d | |
64 | orcom | |
|
65 | 63 64 | imbitrdi | |
66 | 24 30 36 42 49 65 | nnind | |
67 | 66 | ord | |
68 | 18 67 | impbid | |