Metamath Proof Explorer


Theorem nneo

Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006) (Proof shortened by Mario Carneiro, 18-May-2014)

Ref Expression
Assertion nneo NN2¬N+12

Proof

Step Hyp Ref Expression
1 peano2nn NN+1
2 1 nncnd NN+1
3 2cn 2
4 3 a1i N2
5 2ne0 20
6 5 a1i N20
7 2 4 6 divcan2d N2N+12=N+1
8 nncn NN
9 8 4 6 divcan2d N2N2=N
10 9 oveq1d N2N2+1=N+1
11 7 10 eqtr4d N2N+12=2N2+1
12 nnz N+12N+12
13 nnz N2N2
14 zneo N+12N22N+122N2+1
15 12 13 14 syl2an N+12N22N+122N2+1
16 15 expcom N2N+122N+122N2+1
17 16 necon2bd N22N+12=2N2+1¬N+12
18 11 17 syl5com NN2¬N+12
19 oveq1 j=1j+1=1+1
20 19 oveq1d j=1j+12=1+12
21 20 eleq1d j=1j+121+12
22 oveq1 j=1j2=12
23 22 eleq1d j=1j212
24 21 23 orbi12d j=1j+12j21+1212
25 oveq1 j=kj+1=k+1
26 25 oveq1d j=kj+12=k+12
27 26 eleq1d j=kj+12k+12
28 oveq1 j=kj2=k2
29 28 eleq1d j=kj2k2
30 27 29 orbi12d j=kj+12j2k+12k2
31 oveq1 j=k+1j+1=k+1+1
32 31 oveq1d j=k+1j+12=k+1+12
33 32 eleq1d j=k+1j+12k+1+12
34 oveq1 j=k+1j2=k+12
35 34 eleq1d j=k+1j2k+12
36 33 35 orbi12d j=k+1j+12j2k+1+12k+12
37 oveq1 j=Nj+1=N+1
38 37 oveq1d j=Nj+12=N+12
39 38 eleq1d j=Nj+12N+12
40 oveq1 j=Nj2=N2
41 40 eleq1d j=Nj2N2
42 39 41 orbi12d j=Nj+12j2N+12N2
43 df-2 2=1+1
44 43 oveq1i 22=1+12
45 2div2e1 22=1
46 44 45 eqtr3i 1+12=1
47 1nn 1
48 46 47 eqeltri 1+12
49 48 orci 1+1212
50 peano2nn k2k2+1
51 nncn kk
52 add1p1 kk+1+1=k+2
53 52 oveq1d kk+1+12=k+22
54 2cnne0 220
55 divdir k2220k+22=k2+22
56 3 54 55 mp3an23 kk+22=k2+22
57 45 oveq2i k2+22=k2+1
58 56 57 eqtrdi kk+22=k2+1
59 53 58 eqtrd kk+1+12=k2+1
60 51 59 syl kk+1+12=k2+1
61 60 eleq1d kk+1+12k2+1
62 50 61 imbitrrid kk2k+1+12
63 62 orim2d kk+12k2k+12k+1+12
64 orcom k+12k+1+12k+1+12k+12
65 63 64 imbitrdi kk+12k2k+1+12k+12
66 24 30 36 42 49 65 nnind NN+12N2
67 66 ord N¬N+12N2
68 18 67 impbid NN2¬N+12