Description: Lemma for noinfbnd1 . When there is no minimum, if any member of B is a prolongment of T , then so are all elements below it. (Contributed by Scott Fenton, 9-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | noinfbnd1.1 | |
|
Assertion | noinfbnd1lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noinfbnd1.1 | |
|
2 | simp3rl | |
|
3 | 1 | noinfbnd1lem1 | |
4 | 2 3 | syld3an3 | |
5 | simp3rr | |
|
6 | simp2l | |
|
7 | simp3ll | |
|
8 | 6 7 | sseldd | |
9 | 6 2 | sseldd | |
10 | 1 | noinfno | |
11 | 10 | 3ad2ant2 | |
12 | nodmon | |
|
13 | 11 12 | syl | |
14 | sltres | |
|
15 | 8 9 13 14 | syl3anc | |
16 | 5 15 | mtod | |
17 | simp3lr | |
|
18 | 17 | breq1d | |
19 | 16 18 | mtbid | |
20 | noreson | |
|
21 | 9 13 20 | syl2anc | |
22 | sltso | |
|
23 | sotrieq2 | |
|
24 | 22 23 | mpan | |
25 | 21 11 24 | syl2anc | |
26 | 4 19 25 | mpbir2and | |