Metamath Proof Explorer


Theorem noinfbnd1lem2

Description: Lemma for noinfbnd1 . When there is no minimum, if any member of B is a prolongment of T , then so are all elements below it. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfbnd1.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinfbnd1lem2 ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWWdomT=T

Proof

Step Hyp Ref Expression
1 noinfbnd1.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 simp3rl ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWWB
3 1 noinfbnd1lem1 ¬xByB¬y<sxBNoBVWB¬WdomT<sT
4 2 3 syld3an3 ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sW¬WdomT<sT
5 simp3rr ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sW¬U<sW
6 simp2l ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWBNo
7 simp3ll ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWUB
8 6 7 sseldd ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWUNo
9 6 2 sseldd ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWWNo
10 1 noinfno BNoBVTNo
11 10 3ad2ant2 ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWTNo
12 nodmon TNodomTOn
13 11 12 syl ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWdomTOn
14 sltres UNoWNodomTOnUdomT<sWdomTU<sW
15 8 9 13 14 syl3anc ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWUdomT<sWdomTU<sW
16 5 15 mtod ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sW¬UdomT<sWdomT
17 simp3lr ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWUdomT=T
18 17 breq1d ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWUdomT<sWdomTT<sWdomT
19 16 18 mtbid ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sW¬T<sWdomT
20 noreson WNodomTOnWdomTNo
21 9 13 20 syl2anc ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWWdomTNo
22 sltso <sOrNo
23 sotrieq2 <sOrNoWdomTNoTNoWdomT=T¬WdomT<sT¬T<sWdomT
24 22 23 mpan WdomTNoTNoWdomT=T¬WdomT<sT¬T<sWdomT
25 21 11 24 syl2anc ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWWdomT=T¬WdomT<sT¬T<sWdomT
26 4 19 25 mpbir2and ¬xByB¬y<sxBNoBVUBUdomT=TWB¬U<sWWdomT=T