Description: Using the Axiom of Regularity in the form zfregfr , show that there are no infinite descending e. -chains. Proposition 7.34 of TakeutiZaring p. 44. (Contributed by NM, 26-Jan-2006) (Revised by Mario Carneiro, 22-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | noinfep | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex | |
|
2 | 1 | mptex | |
3 | 2 | rnex | |
4 | zfregfr | |
|
5 | ssid | |
|
6 | dmmptg | |
|
7 | fvexd | |
|
8 | 6 7 | mprg | |
9 | peano1 | |
|
10 | 9 | ne0ii | |
11 | 8 10 | eqnetri | |
12 | dm0rn0 | |
|
13 | 12 | necon3bii | |
14 | 11 13 | mpbi | |
15 | fri | |
|
16 | 3 4 5 14 15 | mp4an | |
17 | fvex | |
|
18 | eqid | |
|
19 | 17 18 | fnmpti | |
20 | fvelrnb | |
|
21 | 19 20 | ax-mp | |
22 | peano2 | |
|
23 | fveq2 | |
|
24 | fvex | |
|
25 | 23 18 24 | fvmpt | |
26 | 22 25 | syl | |
27 | fnfvelrn | |
|
28 | 19 22 27 | sylancr | |
29 | 26 28 | eqeltrrd | |
30 | epel | |
|
31 | eleq1 | |
|
32 | 30 31 | bitrid | |
33 | 32 | notbid | |
34 | df-nel | |
|
35 | 33 34 | bitr4di | |
36 | 35 | rspccv | |
37 | 29 36 | syl5com | |
38 | fveq2 | |
|
39 | fvex | |
|
40 | 38 18 39 | fvmpt | |
41 | eqeq1 | |
|
42 | 40 41 | syl5ibcom | |
43 | neleq2 | |
|
44 | 43 | biimpd | |
45 | 42 44 | syl6 | |
46 | 45 | com23 | |
47 | 37 46 | syldc | |
48 | 47 | reximdvai | |
49 | 21 48 | biimtrid | |
50 | 49 | com12 | |
51 | 50 | rexlimiv | |
52 | 16 51 | ax-mp | |