Metamath Proof Explorer


Theorem noinfep

Description: Using the Axiom of Regularity in the form zfregfr , show that there are no infinite descending e. -chains. Proposition 7.34 of TakeutiZaring p. 44. (Contributed by NM, 26-Jan-2006) (Revised by Mario Carneiro, 22-Mar-2013)

Ref Expression
Assertion noinfep xωFsucxFx

Proof

Step Hyp Ref Expression
1 omex ωV
2 1 mptex wωFwV
3 2 rnex ranwωFwV
4 zfregfr EFrranwωFw
5 ssid ranwωFwranwωFw
6 dmmptg wωFwVdomwωFw=ω
7 fvexd wωFwV
8 6 7 mprg domwωFw=ω
9 peano1 ω
10 9 ne0ii ω
11 8 10 eqnetri domwωFw
12 dm0rn0 domwωFw=ranwωFw=
13 12 necon3bii domwωFwranwωFw
14 11 13 mpbi ranwωFw
15 fri ranwωFwVEFrranwωFwranwωFwranwωFwranwωFwyranwωFwzranwωFw¬zEy
16 3 4 5 14 15 mp4an yranwωFwzranwωFw¬zEy
17 fvex FwV
18 eqid wωFw=wωFw
19 17 18 fnmpti wωFwFnω
20 fvelrnb wωFwFnωyranwωFwxωwωFwx=y
21 19 20 ax-mp yranwωFwxωwωFwx=y
22 peano2 xωsucxω
23 fveq2 w=sucxFw=Fsucx
24 fvex FsucxV
25 23 18 24 fvmpt sucxωwωFwsucx=Fsucx
26 22 25 syl xωwωFwsucx=Fsucx
27 fnfvelrn wωFwFnωsucxωwωFwsucxranwωFw
28 19 22 27 sylancr xωwωFwsucxranwωFw
29 26 28 eqeltrrd xωFsucxranwωFw
30 epel zEyzy
31 eleq1 z=FsucxzyFsucxy
32 30 31 bitrid z=FsucxzEyFsucxy
33 32 notbid z=Fsucx¬zEy¬Fsucxy
34 df-nel Fsucxy¬Fsucxy
35 33 34 bitr4di z=Fsucx¬zEyFsucxy
36 35 rspccv zranwωFw¬zEyFsucxranwωFwFsucxy
37 29 36 syl5com xωzranwωFw¬zEyFsucxy
38 fveq2 w=xFw=Fx
39 fvex FxV
40 38 18 39 fvmpt xωwωFwx=Fx
41 eqeq1 wωFwx=ywωFwx=Fxy=Fx
42 40 41 syl5ibcom xωwωFwx=yy=Fx
43 neleq2 y=FxFsucxyFsucxFx
44 43 biimpd y=FxFsucxyFsucxFx
45 42 44 syl6 xωwωFwx=yFsucxyFsucxFx
46 45 com23 xωFsucxywωFwx=yFsucxFx
47 37 46 syldc zranwωFw¬zEyxωwωFwx=yFsucxFx
48 47 reximdvai zranwωFw¬zEyxωwωFwx=yxωFsucxFx
49 21 48 biimtrid zranwωFw¬zEyyranwωFwxωFsucxFx
50 49 com12 yranwωFwzranwωFw¬zEyxωFsucxFx
51 50 rexlimiv yranwωFwzranwωFw¬zEyxωFsucxFx
52 16 51 ax-mp xωFsucxFx