Metamath Proof Explorer


Theorem norm1

Description: From any nonzero Hilbert space vector, construct a vector whose norm is 1. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion norm1 AA0norm1normAA=1

Proof

Step Hyp Ref Expression
1 normcl AnormA
2 1 adantr AA0normA
3 normne0 AnormA0A0
4 3 biimpar AA0normA0
5 2 4 rereccld AA01normA
6 5 recnd AA01normA
7 simpl AA0A
8 norm-iii 1normAAnorm1normAA=1normAnormA
9 6 7 8 syl2anc AA0norm1normAA=1normAnormA
10 normgt0 AA00<normA
11 10 biimpa AA00<normA
12 1re 1
13 0le1 01
14 divge0 101normA0<normA01normA
15 12 13 14 mpanl12 normA0<normA01normA
16 2 11 15 syl2anc AA001normA
17 5 16 absidd AA01normA=1normA
18 17 oveq1d AA01normAnormA=1normAnormA
19 1 recnd AnormA
20 19 adantr AA0normA
21 20 4 recid2d AA01normAnormA=1
22 9 18 21 3eqtrd AA0norm1normAA=1