Metamath Proof Explorer


Theorem nrmsep2

Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion nrmsep2 J Nrm C Clsd J D Clsd J C D = x J C x cls J x D =

Proof

Step Hyp Ref Expression
1 simpl J Nrm C Clsd J D Clsd J C D = J Nrm
2 simpr2 J Nrm C Clsd J D Clsd J C D = D Clsd J
3 eqid J = J
4 3 cldopn D Clsd J J D J
5 2 4 syl J Nrm C Clsd J D Clsd J C D = J D J
6 simpr1 J Nrm C Clsd J D Clsd J C D = C Clsd J
7 simpr3 J Nrm C Clsd J D Clsd J C D = C D =
8 3 cldss C Clsd J C J
9 reldisj C J C D = C J D
10 6 8 9 3syl J Nrm C Clsd J D Clsd J C D = C D = C J D
11 7 10 mpbid J Nrm C Clsd J D Clsd J C D = C J D
12 nrmsep3 J Nrm J D J C Clsd J C J D x J C x cls J x J D
13 1 5 6 11 12 syl13anc J Nrm C Clsd J D Clsd J C D = x J C x cls J x J D
14 ssdifin0 cls J x J D cls J x D =
15 14 anim2i C x cls J x J D C x cls J x D =
16 15 reximi x J C x cls J x J D x J C x cls J x D =
17 13 16 syl J Nrm C Clsd J D Clsd J C D = x J C x cls J x D =