Metamath Proof Explorer


Theorem nrmsep2

Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion nrmsep2 JNrmCClsdJDClsdJCD=xJCxclsJxD=

Proof

Step Hyp Ref Expression
1 simpl JNrmCClsdJDClsdJCD=JNrm
2 simpr2 JNrmCClsdJDClsdJCD=DClsdJ
3 eqid J=J
4 3 cldopn DClsdJJDJ
5 2 4 syl JNrmCClsdJDClsdJCD=JDJ
6 simpr1 JNrmCClsdJDClsdJCD=CClsdJ
7 simpr3 JNrmCClsdJDClsdJCD=CD=
8 3 cldss CClsdJCJ
9 reldisj CJCD=CJD
10 6 8 9 3syl JNrmCClsdJDClsdJCD=CD=CJD
11 7 10 mpbid JNrmCClsdJDClsdJCD=CJD
12 nrmsep3 JNrmJDJCClsdJCJDxJCxclsJxJD
13 1 5 6 11 12 syl13anc JNrmCClsdJDClsdJCD=xJCxclsJxJD
14 ssdifin0 clsJxJDclsJxD=
15 14 anim2i CxclsJxJDCxclsJxD=
16 15 reximi xJCxclsJxJDxJCxclsJxD=
17 13 16 syl JNrmCClsdJDClsdJCD=xJCxclsJxD=