Metamath Proof Explorer


Theorem nsgacs

Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypothesis subgacs.b B=BaseG
Assertion nsgacs GGrpNrmSGrpGACSB

Proof

Step Hyp Ref Expression
1 subgacs.b B=BaseG
2 1 subgss sSubGrpGsB
3 velpw s𝒫BsB
4 2 3 sylibr sSubGrpGs𝒫B
5 eleq2w z=sx+Gy-Gxzx+Gy-Gxs
6 5 raleqbi1dv z=syzx+Gy-Gxzysx+Gy-Gxs
7 6 ralbidv z=sxByzx+Gy-GxzxBysx+Gy-Gxs
8 7 elrab3 s𝒫Bsz𝒫B|xByzx+Gy-GxzxBysx+Gy-Gxs
9 4 8 syl sSubGrpGsz𝒫B|xByzx+Gy-GxzxBysx+Gy-Gxs
10 9 bicomd sSubGrpGxBysx+Gy-Gxssz𝒫B|xByzx+Gy-Gxz
11 10 pm5.32i sSubGrpGxBysx+Gy-GxssSubGrpGsz𝒫B|xByzx+Gy-Gxz
12 eqid +G=+G
13 eqid -G=-G
14 1 12 13 isnsg3 sNrmSGrpGsSubGrpGxBysx+Gy-Gxs
15 elin sSubGrpGz𝒫B|xByzx+Gy-GxzsSubGrpGsz𝒫B|xByzx+Gy-Gxz
16 11 14 15 3bitr4i sNrmSGrpGsSubGrpGz𝒫B|xByzx+Gy-Gxz
17 16 eqriv NrmSGrpG=SubGrpGz𝒫B|xByzx+Gy-Gxz
18 1 fvexi BV
19 mreacs BVACSBMoore𝒫B
20 18 19 mp1i GGrpACSBMoore𝒫B
21 1 subgacs GGrpSubGrpGACSB
22 simpl GGrpxByBGGrp
23 1 12 grpcl GGrpxByBx+GyB
24 23 3expb GGrpxByBx+GyB
25 simprl GGrpxByBxB
26 1 13 grpsubcl GGrpx+GyBxBx+Gy-GxB
27 22 24 25 26 syl3anc GGrpxByBx+Gy-GxB
28 27 ralrimivva GGrpxByBx+Gy-GxB
29 acsfn1c BVxByBx+Gy-GxBz𝒫B|xByzx+Gy-GxzACSB
30 18 28 29 sylancr GGrpz𝒫B|xByzx+Gy-GxzACSB
31 mreincl ACSBMoore𝒫BSubGrpGACSBz𝒫B|xByzx+Gy-GxzACSBSubGrpGz𝒫B|xByzx+Gy-GxzACSB
32 20 21 30 31 syl3anc GGrpSubGrpGz𝒫B|xByzx+Gy-GxzACSB
33 17 32 eqeltrid GGrpNrmSGrpGACSB