Metamath Proof Explorer


Theorem nsssmfmbf

Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis nsssmfmbf.1 S = dom vol
Assertion nsssmfmbf ¬ SMblFn S MblFn

Proof

Step Hyp Ref Expression
1 nsssmfmbf.1 S = dom vol
2 vitali2 dom vol 𝒫
3 2 pssnssi ¬ 𝒫 dom vol
4 nss ¬ 𝒫 dom vol x x 𝒫 ¬ x dom vol
5 3 4 mpbi x x 𝒫 ¬ x dom vol
6 elpwi x 𝒫 x
7 6 adantr x 𝒫 ¬ x dom vol x
8 1 eleq2i x S x dom vol
9 8 bicomi x dom vol x S
10 9 notbii ¬ x dom vol ¬ x S
11 10 biimpi ¬ x dom vol ¬ x S
12 11 adantl x 𝒫 ¬ x dom vol ¬ x S
13 eqid y x 0 = y x 0
14 1 7 12 13 nsssmfmbflem x 𝒫 ¬ x dom vol f f SMblFn S ¬ f MblFn
15 14 exlimiv x x 𝒫 ¬ x dom vol f f SMblFn S ¬ f MblFn
16 5 15 ax-mp f f SMblFn S ¬ f MblFn
17 nss ¬ SMblFn S MblFn f f SMblFn S ¬ f MblFn
18 16 17 mpbir ¬ SMblFn S MblFn