Metamath Proof Explorer


Theorem nsssmfmbf

Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis nsssmfmbf.1 S=domvol
Assertion nsssmfmbf ¬SMblFnSMblFn

Proof

Step Hyp Ref Expression
1 nsssmfmbf.1 S=domvol
2 vitali2 domvol𝒫
3 2 pssnssi ¬𝒫domvol
4 nss ¬𝒫domvolxx𝒫¬xdomvol
5 3 4 mpbi xx𝒫¬xdomvol
6 elpwi x𝒫x
7 6 adantr x𝒫¬xdomvolx
8 1 eleq2i xSxdomvol
9 8 bicomi xdomvolxS
10 9 notbii ¬xdomvol¬xS
11 10 biimpi ¬xdomvol¬xS
12 11 adantl x𝒫¬xdomvol¬xS
13 eqid yx0=yx0
14 1 7 12 13 nsssmfmbflem x𝒫¬xdomvolffSMblFnS¬fMblFn
15 14 exlimiv xx𝒫¬xdomvolffSMblFnS¬fMblFn
16 5 15 ax-mp ffSMblFnS¬fMblFn
17 nss ¬SMblFnSMblFnffSMblFnS¬fMblFn
18 16 17 mpbir ¬SMblFnSMblFn