Metamath Proof Explorer


Theorem ntrin

Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clscld.1 X=J
Assertion ntrin JTopAXBXintJAB=intJAintJB

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 inss1 ABA
3 1 ntrss JTopAXABAintJABintJA
4 2 3 mp3an3 JTopAXintJABintJA
5 4 3adant3 JTopAXBXintJABintJA
6 inss2 ABB
7 1 ntrss JTopBXABBintJABintJB
8 6 7 mp3an3 JTopBXintJABintJB
9 8 3adant2 JTopAXBXintJABintJB
10 5 9 ssind JTopAXBXintJABintJAintJB
11 simp1 JTopAXBXJTop
12 ssinss1 AXABX
13 12 3ad2ant2 JTopAXBXABX
14 1 ntropn JTopAXintJAJ
15 14 3adant3 JTopAXBXintJAJ
16 1 ntropn JTopBXintJBJ
17 16 3adant2 JTopAXBXintJBJ
18 inopn JTopintJAJintJBJintJAintJBJ
19 11 15 17 18 syl3anc JTopAXBXintJAintJBJ
20 inss1 intJAintJBintJA
21 1 ntrss2 JTopAXintJAA
22 21 3adant3 JTopAXBXintJAA
23 20 22 sstrid JTopAXBXintJAintJBA
24 inss2 intJAintJBintJB
25 1 ntrss2 JTopBXintJBB
26 25 3adant2 JTopAXBXintJBB
27 24 26 sstrid JTopAXBXintJAintJBB
28 23 27 ssind JTopAXBXintJAintJBAB
29 1 ssntr JTopABXintJAintJBJintJAintJBABintJAintJBintJAB
30 11 13 19 28 29 syl22anc JTopAXBXintJAintJBintJAB
31 10 30 eqssd JTopAXBXintJAB=intJAintJB