Metamath Proof Explorer


Theorem ntrneineine1lem

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
ntrnei.x φXB
Assertion ntrneineine1lem φs𝒫B¬XIsNX𝒫B

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 ntrnei.x φXB
5 3 adantr φs𝒫BIFN
6 4 adantr φs𝒫BXB
7 simpr φs𝒫Bs𝒫B
8 1 2 5 6 7 ntrneiel φs𝒫BXIssNX
9 8 notbid φs𝒫B¬XIs¬sNX
10 9 rexbidva φs𝒫B¬XIss𝒫B¬sNX
11 1 2 3 ntrneinex φN𝒫𝒫BB
12 elmapi N𝒫𝒫BBN:B𝒫𝒫B
13 11 12 syl φN:B𝒫𝒫B
14 13 4 ffvelcdmd φNX𝒫𝒫B
15 14 elpwid φNX𝒫B
16 biortn NX𝒫B¬𝒫BNX¬NX𝒫B¬𝒫BNX
17 15 16 syl φ¬𝒫BNX¬NX𝒫B¬𝒫BNX
18 df-rex s𝒫B¬sNXss𝒫B¬sNX
19 nss ¬𝒫BNXss𝒫B¬sNX
20 18 19 bitr4i s𝒫B¬sNX¬𝒫BNX
21 df-ne NX𝒫B¬NX=𝒫B
22 ianor ¬NX𝒫B𝒫BNX¬NX𝒫B¬𝒫BNX
23 eqss NX=𝒫BNX𝒫B𝒫BNX
24 22 23 xchnxbir ¬NX=𝒫B¬NX𝒫B¬𝒫BNX
25 21 24 bitri NX𝒫B¬NX𝒫B¬𝒫BNX
26 17 20 25 3bitr4g φs𝒫B¬sNXNX𝒫B
27 10 26 bitrd φs𝒫B¬XIsNX𝒫B