Metamath Proof Explorer


Theorem nulmbl

Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion nulmbl Avol*A=0Adomvol

Proof

Step Hyp Ref Expression
1 simpl Avol*A=0A
2 elpwi x𝒫x
3 inss2 xAA
4 ovolssnul xAAAvol*A=0vol*xA=0
5 3 4 mp3an1 Avol*A=0vol*xA=0
6 5 adantr Avol*A=0xvol*xvol*xA=0
7 6 oveq1d Avol*A=0xvol*xvol*xA+vol*xA=0+vol*xA
8 difss xAx
9 ovolsscl xAxxvol*xvol*xA
10 8 9 mp3an1 xvol*xvol*xA
11 10 adantl Avol*A=0xvol*xvol*xA
12 11 recnd Avol*A=0xvol*xvol*xA
13 12 addlidd Avol*A=0xvol*x0+vol*xA=vol*xA
14 7 13 eqtrd Avol*A=0xvol*xvol*xA+vol*xA=vol*xA
15 simprl Avol*A=0xvol*xx
16 ovolss xAxxvol*xAvol*x
17 8 15 16 sylancr Avol*A=0xvol*xvol*xAvol*x
18 14 17 eqbrtrd Avol*A=0xvol*xvol*xA+vol*xAvol*x
19 18 expr Avol*A=0xvol*xvol*xA+vol*xAvol*x
20 2 19 sylan2 Avol*A=0x𝒫vol*xvol*xA+vol*xAvol*x
21 20 ralrimiva Avol*A=0x𝒫vol*xvol*xA+vol*xAvol*x
22 ismbl2 AdomvolAx𝒫vol*xvol*xA+vol*xAvol*x
23 1 21 22 sylanbrc Avol*A=0Adomvol