Metamath Proof Explorer


Theorem numclwlk1lem1

Description: Lemma 1 for numclwlk1 (Statement 9 in Huneke p. 2 for n=2): "the number of closed 2-walks v(0) v(1) v(2) from v = v(0) = v(2) ... is kf(0)". (Contributed by AV, 23-May-2022)

Ref Expression
Hypotheses numclwlk1.v V=VtxG
numclwlk1.c C=wClWalksG|1stw=N2ndw0=X2ndwN2=X
numclwlk1.f F=wClWalksG|1stw=N22ndw0=X
Assertion numclwlk1lem1 VFinGRegUSGraphKXVN=2C=KF

Proof

Step Hyp Ref Expression
1 numclwlk1.v V=VtxG
2 numclwlk1.c C=wClWalksG|1stw=N2ndw0=X2ndwN2=X
3 numclwlk1.f F=wClWalksG|1stw=N22ndw0=X
4 3anass 1stw=22ndw0=X2ndw0=X1stw=22ndw0=X2ndw0=X
5 anidm 2ndw0=X2ndw0=X2ndw0=X
6 5 anbi2i 1stw=22ndw0=X2ndw0=X1stw=22ndw0=X
7 4 6 bitri 1stw=22ndw0=X2ndw0=X1stw=22ndw0=X
8 7 rabbii wClWalksG|1stw=22ndw0=X2ndw0=X=wClWalksG|1stw=22ndw0=X
9 8 fveq2i wClWalksG|1stw=22ndw0=X2ndw0=X=wClWalksG|1stw=22ndw0=X
10 simpl VFinGRegUSGraphKVFin
11 simpr VFinGRegUSGraphKGRegUSGraphK
12 simpl XVN=2XV
13 1 clwlknon2num VFinGRegUSGraphKXVwClWalksG|1stw=22ndw0=X=K
14 10 11 12 13 syl2an3an VFinGRegUSGraphKXVN=2wClWalksG|1stw=22ndw0=X=K
15 9 14 eqtrid VFinGRegUSGraphKXVN=2wClWalksG|1stw=22ndw0=X2ndw0=X=K
16 rusgrusgr GRegUSGraphKGUSGraph
17 16 anim2i VFinGRegUSGraphKVFinGUSGraph
18 17 ancomd VFinGRegUSGraphKGUSGraphVFin
19 1 isfusgr GFinUSGraphGUSGraphVFin
20 18 19 sylibr VFinGRegUSGraphKGFinUSGraph
21 ne0i XVV
22 21 adantr XVN=2V
23 1 frusgrnn0 GFinUSGraphGRegUSGraphKVK0
24 20 11 22 23 syl2an3an VFinGRegUSGraphKXVN=2K0
25 24 nn0red VFinGRegUSGraphKXVN=2K
26 ax-1rid KK1=K
27 25 26 syl VFinGRegUSGraphKXVN=2K1=K
28 1 wlkl0 XVwClWalksG|1stw=02ndw0=X=0X
29 28 ad2antrl VFinGRegUSGraphKXVN=2wClWalksG|1stw=02ndw0=X=0X
30 29 fveq2d VFinGRegUSGraphKXVN=2wClWalksG|1stw=02ndw0=X=0X
31 opex 0XV
32 hashsng 0XV0X=1
33 31 32 ax-mp 0X=1
34 30 33 eqtr2di VFinGRegUSGraphKXVN=21=wClWalksG|1stw=02ndw0=X
35 34 oveq2d VFinGRegUSGraphKXVN=2K1=KwClWalksG|1stw=02ndw0=X
36 15 27 35 3eqtr2d VFinGRegUSGraphKXVN=2wClWalksG|1stw=22ndw0=X2ndw0=X=KwClWalksG|1stw=02ndw0=X
37 eqeq2 N=21stw=N1stw=2
38 oveq1 N=2N2=22
39 2cn 2
40 39 subidi 22=0
41 38 40 eqtrdi N=2N2=0
42 41 fveqeq2d N=22ndwN2=X2ndw0=X
43 37 42 3anbi13d N=21stw=N2ndw0=X2ndwN2=X1stw=22ndw0=X2ndw0=X
44 43 rabbidv N=2wClWalksG|1stw=N2ndw0=X2ndwN2=X=wClWalksG|1stw=22ndw0=X2ndw0=X
45 2 44 eqtrid N=2C=wClWalksG|1stw=22ndw0=X2ndw0=X
46 45 fveq2d N=2C=wClWalksG|1stw=22ndw0=X2ndw0=X
47 41 eqeq2d N=21stw=N21stw=0
48 47 anbi1d N=21stw=N22ndw0=X1stw=02ndw0=X
49 48 rabbidv N=2wClWalksG|1stw=N22ndw0=X=wClWalksG|1stw=02ndw0=X
50 3 49 eqtrid N=2F=wClWalksG|1stw=02ndw0=X
51 50 fveq2d N=2F=wClWalksG|1stw=02ndw0=X
52 51 oveq2d N=2KF=KwClWalksG|1stw=02ndw0=X
53 46 52 eqeq12d N=2C=KFwClWalksG|1stw=22ndw0=X2ndw0=X=KwClWalksG|1stw=02ndw0=X
54 53 ad2antll VFinGRegUSGraphKXVN=2C=KFwClWalksG|1stw=22ndw0=X2ndw0=X=KwClWalksG|1stw=02ndw0=X
55 36 54 mpbird VFinGRegUSGraphKXVN=2C=KF