| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwlk1.v |
|
| 2 |
|
numclwlk1.c |
|
| 3 |
|
numclwlk1.f |
|
| 4 |
|
3anass |
|
| 5 |
|
anidm |
|
| 6 |
5
|
anbi2i |
|
| 7 |
4 6
|
bitri |
|
| 8 |
7
|
rabbii |
|
| 9 |
8
|
fveq2i |
|
| 10 |
|
simpl |
|
| 11 |
|
simpr |
|
| 12 |
|
simpl |
|
| 13 |
1
|
clwlknon2num |
|
| 14 |
10 11 12 13
|
syl2an3an |
|
| 15 |
9 14
|
eqtrid |
|
| 16 |
|
rusgrusgr |
|
| 17 |
16
|
anim2i |
|
| 18 |
17
|
ancomd |
|
| 19 |
1
|
isfusgr |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
|
ne0i |
|
| 22 |
21
|
adantr |
|
| 23 |
1
|
frusgrnn0 |
|
| 24 |
20 11 22 23
|
syl2an3an |
|
| 25 |
24
|
nn0red |
|
| 26 |
|
ax-1rid |
|
| 27 |
25 26
|
syl |
|
| 28 |
1
|
wlkl0 |
|
| 29 |
28
|
ad2antrl |
|
| 30 |
29
|
fveq2d |
|
| 31 |
|
opex |
|
| 32 |
|
hashsng |
|
| 33 |
31 32
|
ax-mp |
|
| 34 |
30 33
|
eqtr2di |
|
| 35 |
34
|
oveq2d |
|
| 36 |
15 27 35
|
3eqtr2d |
|
| 37 |
|
eqeq2 |
|
| 38 |
|
oveq1 |
|
| 39 |
|
2cn |
|
| 40 |
39
|
subidi |
|
| 41 |
38 40
|
eqtrdi |
|
| 42 |
41
|
fveqeq2d |
|
| 43 |
37 42
|
3anbi13d |
|
| 44 |
43
|
rabbidv |
|
| 45 |
2 44
|
eqtrid |
|
| 46 |
45
|
fveq2d |
|
| 47 |
41
|
eqeq2d |
|
| 48 |
47
|
anbi1d |
|
| 49 |
48
|
rabbidv |
|
| 50 |
3 49
|
eqtrid |
|
| 51 |
50
|
fveq2d |
|
| 52 |
51
|
oveq2d |
|
| 53 |
46 52
|
eqeq12d |
|
| 54 |
53
|
ad2antll |
|
| 55 |
36 54
|
mpbird |
|