Metamath Proof Explorer


Theorem numclwwlk1lem2foa

Description: Going forth and back from the end of a (closed) walk: W represents the closed walk p_0, ..., p_(n-2), p_0 = p_(n-2). With X = p_(n-2) = p_0 and Y = p_(n-1), ( ( W ++ <" X "> ) ++ <" Y "> ) represents the closed walk p_0, ..., p_(n-2), p_(n-1), p_n = p_0 which is a double loop of length N on vertex X . (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 5-Mar-2022) (Proof shortened by AV, 2-Nov-2022)

Ref Expression
Hypotheses extwwlkfab.v V=VtxG
extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
extwwlkfab.f F=XClWWalksNOnGN2
Assertion numclwwlk1lem2foa GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩XCN

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V=VtxG
2 extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
3 extwwlkfab.f F=XClWWalksNOnGN2
4 simpl2 GUSGraphXVN3WFYGNeighbVtxXXV
5 1 nbgrisvtx YGNeighbVtxXYV
6 5 ad2antll GUSGraphXVN3WFYGNeighbVtxXYV
7 simpl3 GUSGraphXVN3WFYGNeighbVtxXN3
8 nbgrsym YGNeighbVtxXXGNeighbVtxY
9 eqid EdgG=EdgG
10 9 nbusgreledg GUSGraphXGNeighbVtxYXYEdgG
11 10 biimpd GUSGraphXGNeighbVtxYXYEdgG
12 8 11 biimtrid GUSGraphYGNeighbVtxXXYEdgG
13 12 adantld GUSGraphWFYGNeighbVtxXXYEdgG
14 13 3ad2ant1 GUSGraphXVN3WFYGNeighbVtxXXYEdgG
15 14 imp GUSGraphXVN3WFYGNeighbVtxXXYEdgG
16 simprl GUSGraphXVN3WFYGNeighbVtxXWF
17 16 3 eleqtrdi GUSGraphXVN3WFYGNeighbVtxXWXClWWalksNOnGN2
18 1 9 clwwlknonex2 XVYVN3XYEdgGWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩NClWWalksNG
19 4 6 7 15 17 18 syl311anc GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩NClWWalksNG
20 3 eleq2i WFWXClWWalksNOnGN2
21 uz3m2nn N3N2
22 21 nnne0d N3N20
23 1 9 clwwlknonel N20WXClWWalksNOnGN2WWordVi0..^W1WiWi+1EdgGlastSWW0EdgGW=N2W0=X
24 22 23 syl N3WXClWWalksNOnGN2WWordVi0..^W1WiWi+1EdgGlastSWW0EdgGW=N2W0=X
25 24 3ad2ant3 GUSGraphXVN3WXClWWalksNOnGN2WWordVi0..^W1WiWi+1EdgGlastSWW0EdgGW=N2W0=X
26 20 25 bitrid GUSGraphXVN3WFWWordVi0..^W1WiWi+1EdgGlastSWW0EdgGW=N2W0=X
27 3simpa WWordVW=N2GUSGraphXVN3WWordVW=N2
28 27 adantr WWordVW=N2GUSGraphXVN3YGNeighbVtxXWWordVW=N2
29 simp32 WWordVW=N2GUSGraphXVN3XV
30 29 5 anim12i WWordVW=N2GUSGraphXVN3YGNeighbVtxXXVYV
31 simpl33 WWordVW=N2GUSGraphXVN3YGNeighbVtxXN3
32 28 30 31 3jca WWordVW=N2GUSGraphXVN3YGNeighbVtxXWWordVW=N2XVYVN3
33 32 3exp1 WWordVW=N2GUSGraphXVN3YGNeighbVtxXWWordVW=N2XVYVN3
34 33 3ad2ant1 WWordVi0..^W1WiWi+1EdgGlastSWW0EdgGW=N2GUSGraphXVN3YGNeighbVtxXWWordVW=N2XVYVN3
35 34 imp WWordVi0..^W1WiWi+1EdgGlastSWW0EdgGW=N2GUSGraphXVN3YGNeighbVtxXWWordVW=N2XVYVN3
36 35 3adant3 WWordVi0..^W1WiWi+1EdgGlastSWW0EdgGW=N2W0=XGUSGraphXVN3YGNeighbVtxXWWordVW=N2XVYVN3
37 36 com12 GUSGraphXVN3WWordVi0..^W1WiWi+1EdgGlastSWW0EdgGW=N2W0=XYGNeighbVtxXWWordVW=N2XVYVN3
38 26 37 sylbid GUSGraphXVN3WFYGNeighbVtxXWWordVW=N2XVYVN3
39 38 imp32 GUSGraphXVN3WFYGNeighbVtxXWWordVW=N2XVYVN3
40 numclwwlk1lem2foalem WWordVW=N2XVYVN3W++⟨“X”⟩++⟨“Y”⟩prefixN2=WW++⟨“X”⟩++⟨“Y”⟩N1=YW++⟨“X”⟩++⟨“Y”⟩N2=X
41 39 40 syl GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩prefixN2=WW++⟨“X”⟩++⟨“Y”⟩N1=YW++⟨“X”⟩++⟨“Y”⟩N2=X
42 eleq1a WFW++⟨“X”⟩++⟨“Y”⟩prefixN2=WW++⟨“X”⟩++⟨“Y”⟩prefixN2F
43 16 42 syl GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩prefixN2=WW++⟨“X”⟩++⟨“Y”⟩prefixN2F
44 eleq1a YGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩N1=YW++⟨“X”⟩++⟨“Y”⟩N1GNeighbVtxX
45 44 ad2antll GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩N1=YW++⟨“X”⟩++⟨“Y”⟩N1GNeighbVtxX
46 idd GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩N2=XW++⟨“X”⟩++⟨“Y”⟩N2=X
47 43 45 46 3anim123d GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩prefixN2=WW++⟨“X”⟩++⟨“Y”⟩N1=YW++⟨“X”⟩++⟨“Y”⟩N2=XW++⟨“X”⟩++⟨“Y”⟩prefixN2FW++⟨“X”⟩++⟨“Y”⟩N1GNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩N2=X
48 41 47 mpd GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩prefixN2FW++⟨“X”⟩++⟨“Y”⟩N1GNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩N2=X
49 1 2 3 extwwlkfabel GUSGraphXVN3W++⟨“X”⟩++⟨“Y”⟩XCNW++⟨“X”⟩++⟨“Y”⟩NClWWalksNGW++⟨“X”⟩++⟨“Y”⟩prefixN2FW++⟨“X”⟩++⟨“Y”⟩N1GNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩N2=X
50 49 adantr GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩XCNW++⟨“X”⟩++⟨“Y”⟩NClWWalksNGW++⟨“X”⟩++⟨“Y”⟩prefixN2FW++⟨“X”⟩++⟨“Y”⟩N1GNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩N2=X
51 19 48 50 mpbir2and GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩XCN
52 51 ex GUSGraphXVN3WFYGNeighbVtxXW++⟨“X”⟩++⟨“Y”⟩XCN