Description: Going forth and back from the end of a (closed) walk: W represents the closed walk p_0, ..., p_(n-2), p_0 = p_(n-2). With X = p_(n-2) = p_0 and Y = p_(n-1), ( ( W ++ <" X "> ) ++ <" Y "> ) represents the closed walk p_0, ..., p_(n-2), p_(n-1), p_n = p_0 which is a double loop of length N on vertex X . (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 5-Mar-2022) (Proof shortened by AV, 2-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | extwwlkfab.v | |
|
extwwlkfab.c | |
||
extwwlkfab.f | |
||
Assertion | numclwwlk1lem2foa | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extwwlkfab.v | |
|
2 | extwwlkfab.c | |
|
3 | extwwlkfab.f | |
|
4 | simpl2 | |
|
5 | 1 | nbgrisvtx | |
6 | 5 | ad2antll | |
7 | simpl3 | |
|
8 | nbgrsym | |
|
9 | eqid | |
|
10 | 9 | nbusgreledg | |
11 | 10 | biimpd | |
12 | 8 11 | biimtrid | |
13 | 12 | adantld | |
14 | 13 | 3ad2ant1 | |
15 | 14 | imp | |
16 | simprl | |
|
17 | 16 3 | eleqtrdi | |
18 | 1 9 | clwwlknonex2 | |
19 | 4 6 7 15 17 18 | syl311anc | |
20 | 3 | eleq2i | |
21 | uz3m2nn | |
|
22 | 21 | nnne0d | |
23 | 1 9 | clwwlknonel | |
24 | 22 23 | syl | |
25 | 24 | 3ad2ant3 | |
26 | 20 25 | bitrid | |
27 | 3simpa | |
|
28 | 27 | adantr | |
29 | simp32 | |
|
30 | 29 5 | anim12i | |
31 | simpl33 | |
|
32 | 28 30 31 | 3jca | |
33 | 32 | 3exp1 | |
34 | 33 | 3ad2ant1 | |
35 | 34 | imp | |
36 | 35 | 3adant3 | |
37 | 36 | com12 | |
38 | 26 37 | sylbid | |
39 | 38 | imp32 | |
40 | numclwwlk1lem2foalem | |
|
41 | 39 40 | syl | |
42 | eleq1a | |
|
43 | 16 42 | syl | |
44 | eleq1a | |
|
45 | 44 | ad2antll | |
46 | idd | |
|
47 | 43 45 46 | 3anim123d | |
48 | 41 47 | mpd | |
49 | 1 2 3 | extwwlkfabel | |
50 | 49 | adantr | |
51 | 19 48 50 | mpbir2and | |
52 | 51 | ex | |