Metamath Proof Explorer


Theorem numclwwlk3

Description: Statement 12 in Huneke p. 2: "Thus f(n) = (k - 1)f(n - 2) + k^(n-2)." - the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) is the sum of the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) with v(n-2) = v(n) (see numclwwlk1 ) and with v(n-2) =/= v(n) (see numclwwlk2 ): f(n) = kf(n-2) + k^(n-2) - f(n-2) = (k-1)f(n-2) + k^(n-2). (Contributed by Alexander van der Vekens, 26-Aug-2018) (Revised by AV, 6-Mar-2022)

Ref Expression
Hypothesis numclwwlk3.v V=VtxG
Assertion numclwwlk3 GRegUSGraphKGFriendGraphVFinXVN3XClWWalksNOnGN=K1XClWWalksNOnGN2+KN2

Proof

Step Hyp Ref Expression
1 numclwwlk3.v V=VtxG
2 simpl GRegUSGraphKGFriendGraphGRegUSGraphK
3 simp1 VFinXVN3VFin
4 1 finrusgrfusgr GRegUSGraphKVFinGFinUSGraph
5 2 3 4 syl2an GRegUSGraphKGFriendGraphVFinXVN3GFinUSGraph
6 simpr2 GRegUSGraphKGFriendGraphVFinXVN3XV
7 uzuzle23 N3N2
8 7 3ad2ant3 VFinXVN3N2
9 8 adantl GRegUSGraphKGFriendGraphVFinXVN3N2
10 eqid vV,n2wvClWWalksNOnGn|wn2=v=vV,n2wvClWWalksNOnGn|wn2=v
11 eqid vV,n2wvClWWalksNOnGn|wn2v=vV,n2wvClWWalksNOnGn|wn2v
12 10 11 numclwwlk3lem2 GFinUSGraphXVN2XClWWalksNOnGN=XvV,n2wvClWWalksNOnGn|wn2vN+XvV,n2wvClWWalksNOnGn|wn2=vN
13 5 6 9 12 syl21anc GRegUSGraphKGFriendGraphVFinXVN3XClWWalksNOnGN=XvV,n2wvClWWalksNOnGn|wn2vN+XvV,n2wvClWWalksNOnGn|wn2=vN
14 eqid vV,nwnWWalksNG|w0=vlastSwv=vV,nwnWWalksNG|w0=vlastSwv
15 1 14 11 numclwwlk2 GRegUSGraphKGFriendGraphVFinXVN3XvV,n2wvClWWalksNOnGn|wn2vN=KN2XClWWalksNOnGN2
16 2 3 anim12ci GRegUSGraphKGFriendGraphVFinXVN3VFinGRegUSGraphK
17 3simpc VFinXVN3XVN3
18 17 adantl GRegUSGraphKGFriendGraphVFinXVN3XVN3
19 eqid XClWWalksNOnGN2=XClWWalksNOnGN2
20 1 10 19 numclwwlk1 VFinGRegUSGraphKXVN3XvV,n2wvClWWalksNOnGn|wn2=vN=KXClWWalksNOnGN2
21 16 18 20 syl2anc GRegUSGraphKGFriendGraphVFinXVN3XvV,n2wvClWWalksNOnGn|wn2=vN=KXClWWalksNOnGN2
22 15 21 oveq12d GRegUSGraphKGFriendGraphVFinXVN3XvV,n2wvClWWalksNOnGn|wn2vN+XvV,n2wvClWWalksNOnGn|wn2=vN=KN2-XClWWalksNOnGN2+KXClWWalksNOnGN2
23 simpll GRegUSGraphKGFriendGraphVFinXVN3GRegUSGraphK
24 ne0i XVV
25 24 3ad2ant2 VFinXVN3V
26 25 adantl GRegUSGraphKGFriendGraphVFinXVN3V
27 1 frusgrnn0 GFinUSGraphGRegUSGraphKVK0
28 5 23 26 27 syl3anc GRegUSGraphKGFriendGraphVFinXVN3K0
29 28 nn0cnd GRegUSGraphKGFriendGraphVFinXVN3K
30 uz3m2nn N3N2
31 30 3anim3i VFinXVN3VFinXVN2
32 31 adantl GRegUSGraphKGFriendGraphVFinXVN3VFinXVN2
33 1 clwwlknonfin VFinXClWWalksNOnGN2Fin
34 33 3ad2ant1 VFinXVN2XClWWalksNOnGN2Fin
35 hashcl XClWWalksNOnGN2FinXClWWalksNOnGN20
36 35 nn0cnd XClWWalksNOnGN2FinXClWWalksNOnGN2
37 32 34 36 3syl GRegUSGraphKGFriendGraphVFinXVN3XClWWalksNOnGN2
38 numclwwlk3lem1 KXClWWalksNOnGN2N2KN2-XClWWalksNOnGN2+KXClWWalksNOnGN2=K1XClWWalksNOnGN2+KN2
39 29 37 9 38 syl3anc GRegUSGraphKGFriendGraphVFinXVN3KN2-XClWWalksNOnGN2+KXClWWalksNOnGN2=K1XClWWalksNOnGN2+KN2
40 13 22 39 3eqtrd GRegUSGraphKGFriendGraphVFinXVN3XClWWalksNOnGN=K1XClWWalksNOnGN2+KN2