Description: Statement 12 in Huneke p. 2: "Thus f(n) = (k - 1)f(n - 2) + k^(n-2)." - the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) is the sum of the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) with v(n-2) = v(n) (see numclwwlk1 ) and with v(n-2) =/= v(n) (see numclwwlk2 ): f(n) = kf(n-2) + k^(n-2) - f(n-2) = (k-1)f(n-2) + k^(n-2). (Contributed by Alexander van der Vekens, 26-Aug-2018) (Revised by AV, 6-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | numclwwlk3.v | |
|
Assertion | numclwwlk3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk3.v | |
|
2 | simpl | |
|
3 | simp1 | |
|
4 | 1 | finrusgrfusgr | |
5 | 2 3 4 | syl2an | |
6 | simpr2 | |
|
7 | uzuzle23 | |
|
8 | 7 | 3ad2ant3 | |
9 | 8 | adantl | |
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | numclwwlk3lem2 | |
13 | 5 6 9 12 | syl21anc | |
14 | eqid | |
|
15 | 1 14 11 | numclwwlk2 | |
16 | 2 3 | anim12ci | |
17 | 3simpc | |
|
18 | 17 | adantl | |
19 | eqid | |
|
20 | 1 10 19 | numclwwlk1 | |
21 | 16 18 20 | syl2anc | |
22 | 15 21 | oveq12d | |
23 | simpll | |
|
24 | ne0i | |
|
25 | 24 | 3ad2ant2 | |
26 | 25 | adantl | |
27 | 1 | frusgrnn0 | |
28 | 5 23 26 27 | syl3anc | |
29 | 28 | nn0cnd | |
30 | uz3m2nn | |
|
31 | 30 | 3anim3i | |
32 | 31 | adantl | |
33 | 1 | clwwlknonfin | |
34 | 33 | 3ad2ant1 | |
35 | hashcl | |
|
36 | 35 | nn0cnd | |
37 | 32 34 36 | 3syl | |
38 | numclwwlk3lem1 | |
|
39 | 29 37 9 38 | syl3anc | |
40 | 13 22 39 | 3eqtrd | |