| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qnumdencoprm |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 | 2 | oveq1d |  | 
						
							| 4 |  | qnumcl |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | qdencl |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 | 7 | nnzd |  | 
						
							| 9 |  | simpr |  | 
						
							| 10 |  | zexpgcd |  | 
						
							| 11 | 5 8 9 10 | syl3anc |  | 
						
							| 12 |  | nn0z |  | 
						
							| 13 |  | 1exp |  | 
						
							| 14 | 9 12 13 | 3syl |  | 
						
							| 15 | 3 11 14 | 3eqtr3d |  | 
						
							| 16 |  | qeqnumdivden |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 17 | oveq1d |  | 
						
							| 19 | 5 | zcnd |  | 
						
							| 20 | 7 | nncnd |  | 
						
							| 21 | 7 | nnne0d |  | 
						
							| 22 | 19 20 21 9 | expdivd |  | 
						
							| 23 | 18 22 | eqtrd |  | 
						
							| 24 |  | qexpcl |  | 
						
							| 25 |  | zexpcl |  | 
						
							| 26 | 4 25 | sylan |  | 
						
							| 27 | 7 9 | nnexpcld |  | 
						
							| 28 |  | qnumdenbi |  | 
						
							| 29 | 24 26 27 28 | syl3anc |  | 
						
							| 30 | 15 23 29 | mpbi2and |  |