Description: numdensq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | numdenexp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumdencoprm | |
|
2 | 1 | adantr | |
3 | 2 | oveq1d | |
4 | qnumcl | |
|
5 | 4 | adantr | |
6 | qdencl | |
|
7 | 6 | adantr | |
8 | 7 | nnzd | |
9 | simpr | |
|
10 | zexpgcd | |
|
11 | 5 8 9 10 | syl3anc | |
12 | nn0z | |
|
13 | 1exp | |
|
14 | 9 12 13 | 3syl | |
15 | 3 11 14 | 3eqtr3d | |
16 | qeqnumdivden | |
|
17 | 16 | adantr | |
18 | 17 | oveq1d | |
19 | 5 | zcnd | |
20 | 7 | nncnd | |
21 | 7 | nnne0d | |
22 | 19 20 21 9 | expdivd | |
23 | 18 22 | eqtrd | |
24 | qexpcl | |
|
25 | zexpcl | |
|
26 | 4 25 | sylan | |
27 | 7 9 | nnexpcld | |
28 | qnumdenbi | |
|
29 | 24 26 27 28 | syl3anc | |
30 | 15 23 29 | mpbi2and | |