Metamath Proof Explorer


Theorem numdenexp

Description: numdensq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion numdenexp A N 0 numer A N = numer A N denom A N = denom A N

Proof

Step Hyp Ref Expression
1 qnumdencoprm A numer A gcd denom A = 1
2 1 adantr A N 0 numer A gcd denom A = 1
3 2 oveq1d A N 0 numer A gcd denom A N = 1 N
4 qnumcl A numer A
5 4 adantr A N 0 numer A
6 qdencl A denom A
7 6 adantr A N 0 denom A
8 7 nnzd A N 0 denom A
9 simpr A N 0 N 0
10 zexpgcd numer A denom A N 0 numer A gcd denom A N = numer A N gcd denom A N
11 5 8 9 10 syl3anc A N 0 numer A gcd denom A N = numer A N gcd denom A N
12 nn0z N 0 N
13 1exp N 1 N = 1
14 9 12 13 3syl A N 0 1 N = 1
15 3 11 14 3eqtr3d A N 0 numer A N gcd denom A N = 1
16 qeqnumdivden A A = numer A denom A
17 16 adantr A N 0 A = numer A denom A
18 17 oveq1d A N 0 A N = numer A denom A N
19 5 zcnd A N 0 numer A
20 7 nncnd A N 0 denom A
21 7 nnne0d A N 0 denom A 0
22 19 20 21 9 expdivd A N 0 numer A denom A N = numer A N denom A N
23 18 22 eqtrd A N 0 A N = numer A N denom A N
24 qexpcl A N 0 A N
25 zexpcl numer A N 0 numer A N
26 4 25 sylan A N 0 numer A N
27 7 9 nnexpcld A N 0 denom A N
28 qnumdenbi A N numer A N denom A N numer A N gcd denom A N = 1 A N = numer A N denom A N numer A N = numer A N denom A N = denom A N
29 24 26 27 28 syl3anc A N 0 numer A N gcd denom A N = 1 A N = numer A N denom A N numer A N = numer A N denom A N = denom A N
30 15 23 29 mpbi2and A N 0 numer A N = numer A N denom A N = denom A N