Metamath Proof Explorer


Theorem numdenexp

Description: numdensq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion numdenexp AN0numerAN=numerANdenomAN=denomAN

Proof

Step Hyp Ref Expression
1 qnumdencoprm AnumerAgcddenomA=1
2 1 adantr AN0numerAgcddenomA=1
3 2 oveq1d AN0numerAgcddenomAN=1N
4 qnumcl AnumerA
5 4 adantr AN0numerA
6 qdencl AdenomA
7 6 adantr AN0denomA
8 7 nnzd AN0denomA
9 simpr AN0N0
10 zexpgcd numerAdenomAN0numerAgcddenomAN=numerANgcddenomAN
11 5 8 9 10 syl3anc AN0numerAgcddenomAN=numerANgcddenomAN
12 nn0z N0N
13 1exp N1N=1
14 9 12 13 3syl AN01N=1
15 3 11 14 3eqtr3d AN0numerANgcddenomAN=1
16 qeqnumdivden AA=numerAdenomA
17 16 adantr AN0A=numerAdenomA
18 17 oveq1d AN0AN=numerAdenomAN
19 5 zcnd AN0numerA
20 7 nncnd AN0denomA
21 7 nnne0d AN0denomA0
22 19 20 21 9 expdivd AN0numerAdenomAN=numerANdenomAN
23 18 22 eqtrd AN0AN=numerANdenomAN
24 qexpcl AN0AN
25 zexpcl numerAN0numerAN
26 4 25 sylan AN0numerAN
27 7 9 nnexpcld AN0denomAN
28 qnumdenbi ANnumerANdenomANnumerANgcddenomAN=1AN=numerANdenomANnumerAN=numerANdenomAN=denomAN
29 24 26 27 28 syl3anc AN0numerANgcddenomAN=1AN=numerANdenomANnumerAN=numerANdenomAN=denomAN
30 15 23 29 mpbi2and AN0numerAN=numerANdenomAN=denomAN