Step |
Hyp |
Ref |
Expression |
1 |
|
qnumdencoprm |
|
2 |
1
|
adantr |
|
3 |
2
|
oveq1d |
|
4 |
|
qnumcl |
|
5 |
4
|
adantr |
|
6 |
|
qdencl |
|
7 |
6
|
adantr |
|
8 |
7
|
nnzd |
|
9 |
|
simpr |
|
10 |
|
zexpgcd |
|
11 |
5 8 9 10
|
syl3anc |
|
12 |
|
nn0z |
|
13 |
|
1exp |
|
14 |
9 12 13
|
3syl |
|
15 |
3 11 14
|
3eqtr3d |
|
16 |
|
qeqnumdivden |
|
17 |
16
|
adantr |
|
18 |
17
|
oveq1d |
|
19 |
5
|
zcnd |
|
20 |
7
|
nncnd |
|
21 |
7
|
nnne0d |
|
22 |
19 20 21 9
|
expdivd |
|
23 |
18 22
|
eqtrd |
|
24 |
|
qexpcl |
|
25 |
|
zexpcl |
|
26 |
4 25
|
sylan |
|
27 |
7 9
|
nnexpcld |
|
28 |
|
qnumdenbi |
|
29 |
24 26 27 28
|
syl3anc |
|
30 |
15 23 29
|
mpbi2and |
|