Metamath Proof Explorer


Theorem nvdif

Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvdif.1 X=BaseSetU
nvdif.2 G=+vU
nvdif.4 S=𝑠OLDU
nvdif.6 N=normCVU
Assertion nvdif UNrmCVecAXBXNAG-1SB=NBG-1SA

Proof

Step Hyp Ref Expression
1 nvdif.1 X=BaseSetU
2 nvdif.2 G=+vU
3 nvdif.4 S=𝑠OLDU
4 nvdif.6 N=normCVU
5 simp1 UNrmCVecAXBXUNrmCVec
6 neg1cn 1
7 6 a1i UNrmCVecAXBX1
8 simp3 UNrmCVecAXBXBX
9 1 3 nvscl UNrmCVec1AX-1SAX
10 6 9 mp3an2 UNrmCVecAX-1SAX
11 10 3adant3 UNrmCVecAXBX-1SAX
12 1 2 3 nvdi UNrmCVec1BX-1SAX-1SBG-1SA=-1SBG-1S-1SA
13 5 7 8 11 12 syl13anc UNrmCVecAXBX-1SBG-1SA=-1SBG-1S-1SA
14 1 3 nvnegneg UNrmCVecAX-1S-1SA=A
15 14 3adant3 UNrmCVecAXBX-1S-1SA=A
16 15 oveq2d UNrmCVecAXBX-1SBG-1S-1SA=-1SBGA
17 1 3 nvscl UNrmCVec1BX-1SBX
18 6 17 mp3an2 UNrmCVecBX-1SBX
19 18 3adant2 UNrmCVecAXBX-1SBX
20 simp2 UNrmCVecAXBXAX
21 1 2 nvcom UNrmCVec-1SBXAX-1SBGA=AG-1SB
22 5 19 20 21 syl3anc UNrmCVecAXBX-1SBGA=AG-1SB
23 13 16 22 3eqtrd UNrmCVecAXBX-1SBG-1SA=AG-1SB
24 23 fveq2d UNrmCVecAXBXN-1SBG-1SA=NAG-1SB
25 1 2 nvgcl UNrmCVecBX-1SAXBG-1SAX
26 5 8 11 25 syl3anc UNrmCVecAXBXBG-1SAX
27 1 3 4 nvm1 UNrmCVecBG-1SAXN-1SBG-1SA=NBG-1SA
28 5 26 27 syl2anc UNrmCVecAXBXN-1SBG-1SA=NBG-1SA
29 24 28 eqtr3d UNrmCVecAXBXNAG-1SB=NBG-1SA