Metamath Proof Explorer


Theorem o1co

Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses o1co.1 φF:A
o1co.2 φF𝑂1
o1co.3 φG:BA
o1co.4 φB
o1co.5 φmxyBxymGy
Assertion o1co φFG𝑂1

Proof

Step Hyp Ref Expression
1 o1co.1 φF:A
2 o1co.2 φF𝑂1
3 o1co.3 φG:BA
4 o1co.4 φB
5 o1co.5 φmxyBxymGy
6 1 fdmd φdomF=A
7 o1dm F𝑂1domF
8 2 7 syl φdomF
9 6 8 eqsstrrd φA
10 elo12 F:AAF𝑂1mnzAmzFzn
11 1 9 10 syl2anc φF𝑂1mnzAmzFzn
12 2 11 mpbid φmnzAmzFzn
13 reeanv xnyBxymGyzAmzFznxyBxymGynzAmzFzn
14 3 ad3antrrr φmxnG:BA
15 14 ffvelcdmda φmxnyBGyA
16 breq2 z=GymzmGy
17 2fveq3 z=GyFz=FGy
18 17 breq1d z=GyFznFGyn
19 16 18 imbi12d z=GymzFznmGyFGyn
20 19 rspcva GyAzAmzFznmGyFGyn
21 15 20 sylan φmxnyBzAmzFznmGyFGyn
22 21 an32s φmxnzAmzFznyBmGyFGyn
23 14 adantr φmxnzAmzFznG:BA
24 fvco3 G:BAyBFGy=FGy
25 23 24 sylan φmxnzAmzFznyBFGy=FGy
26 25 fveq2d φmxnzAmzFznyBFGy=FGy
27 26 breq1d φmxnzAmzFznyBFGynFGyn
28 22 27 sylibrd φmxnzAmzFznyBmGyFGyn
29 28 imim2d φmxnzAmzFznyBxymGyxyFGyn
30 29 ralimdva φmxnzAmzFznyBxymGyyBxyFGyn
31 30 expimpd φmxnzAmzFznyBxymGyyBxyFGyn
32 31 ancomsd φmxnyBxymGyzAmzFznyBxyFGyn
33 32 reximdva φmxnyBxymGyzAmzFznnyBxyFGyn
34 33 reximdva φmxnyBxymGyzAmzFznxnyBxyFGyn
35 13 34 biimtrrid φmxyBxymGynzAmzFznxnyBxyFGyn
36 5 35 mpand φmnzAmzFznxnyBxyFGyn
37 36 rexlimdva φmnzAmzFznxnyBxyFGyn
38 12 37 mpd φxnyBxyFGyn
39 fco F:AG:BAFG:B
40 1 3 39 syl2anc φFG:B
41 elo12 FG:BBFG𝑂1xnyBxyFGyn
42 40 4 41 syl2anc φFG𝑂1xnyBxyFGyn
43 38 42 mpbird φFG𝑂1