Description: Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oadif1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | oacl | |
|
3 | onelon | |
|
4 | 2 3 | sylan | |
5 | ontri1 | |
|
6 | 1 4 5 | syl2an2r | |
7 | 6 | pm5.32da | |
8 | ancom | |
|
9 | 7 8 | bitr3di | |
10 | oawordex2 | |
|
11 | 9 10 | sylbida | |
12 | eqcom | |
|
13 | 12 | rexbii | |
14 | 11 13 | sylib | |
15 | 14 | ex | |
16 | simpr | |
|
17 | oaordi | |
|
18 | 17 | ancoms | |
19 | 18 | imp | |
20 | 19 | adantr | |
21 | 16 20 | eqeltrd | |
22 | simpr | |
|
23 | onelon | |
|
24 | 22 23 | sylan | |
25 | oaword1 | |
|
26 | 1 24 25 | syl2an2r | |
27 | oacl | |
|
28 | 1 24 27 | syl2an2r | |
29 | ontri1 | |
|
30 | 1 28 29 | syl2an2r | |
31 | 26 30 | mpbid | |
32 | 31 | adantr | |
33 | 16 32 | eqneltrd | |
34 | 21 33 | jca | |
35 | 34 | rexlimdva2 | |
36 | 15 35 | impbid | |
37 | eldif | |
|
38 | vex | |
|
39 | eqeq1 | |
|
40 | 39 | rexbidv | |
41 | 38 40 | elab | |
42 | 36 37 41 | 3bitr4g | |
43 | 42 | eqrdv | |