Metamath Proof Explorer


Theorem oadif1

Description: Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oadif1 AOnBOnA+𝑜BA=x|bBx=A+𝑜b

Proof

Step Hyp Ref Expression
1 simpl AOnBOnAOn
2 oacl AOnBOnA+𝑜BOn
3 onelon A+𝑜BOnyA+𝑜ByOn
4 2 3 sylan AOnBOnyA+𝑜ByOn
5 ontri1 AOnyOnAy¬yA
6 1 4 5 syl2an2r AOnBOnyA+𝑜BAy¬yA
7 6 pm5.32da AOnBOnyA+𝑜BAyyA+𝑜B¬yA
8 ancom yA+𝑜BAyAyyA+𝑜B
9 7 8 bitr3di AOnBOnyA+𝑜B¬yAAyyA+𝑜B
10 oawordex2 AOnBOnAyyA+𝑜BbBA+𝑜b=y
11 9 10 sylbida AOnBOnyA+𝑜B¬yAbBA+𝑜b=y
12 eqcom A+𝑜b=yy=A+𝑜b
13 12 rexbii bBA+𝑜b=ybBy=A+𝑜b
14 11 13 sylib AOnBOnyA+𝑜B¬yAbBy=A+𝑜b
15 14 ex AOnBOnyA+𝑜B¬yAbBy=A+𝑜b
16 simpr AOnBOnbBy=A+𝑜by=A+𝑜b
17 oaordi BOnAOnbBA+𝑜bA+𝑜B
18 17 ancoms AOnBOnbBA+𝑜bA+𝑜B
19 18 imp AOnBOnbBA+𝑜bA+𝑜B
20 19 adantr AOnBOnbBy=A+𝑜bA+𝑜bA+𝑜B
21 16 20 eqeltrd AOnBOnbBy=A+𝑜byA+𝑜B
22 simpr AOnBOnBOn
23 onelon BOnbBbOn
24 22 23 sylan AOnBOnbBbOn
25 oaword1 AOnbOnAA+𝑜b
26 1 24 25 syl2an2r AOnBOnbBAA+𝑜b
27 oacl AOnbOnA+𝑜bOn
28 1 24 27 syl2an2r AOnBOnbBA+𝑜bOn
29 ontri1 AOnA+𝑜bOnAA+𝑜b¬A+𝑜bA
30 1 28 29 syl2an2r AOnBOnbBAA+𝑜b¬A+𝑜bA
31 26 30 mpbid AOnBOnbB¬A+𝑜bA
32 31 adantr AOnBOnbBy=A+𝑜b¬A+𝑜bA
33 16 32 eqneltrd AOnBOnbBy=A+𝑜b¬yA
34 21 33 jca AOnBOnbBy=A+𝑜byA+𝑜B¬yA
35 34 rexlimdva2 AOnBOnbBy=A+𝑜byA+𝑜B¬yA
36 15 35 impbid AOnBOnyA+𝑜B¬yAbBy=A+𝑜b
37 eldif yA+𝑜BAyA+𝑜B¬yA
38 vex yV
39 eqeq1 x=yx=A+𝑜by=A+𝑜b
40 39 rexbidv x=ybBx=A+𝑜bbBy=A+𝑜b
41 38 40 elab yx|bBx=A+𝑜bbBy=A+𝑜b
42 36 37 41 3bitr4g AOnBOnyA+𝑜BAyx|bBx=A+𝑜b
43 42 eqrdv AOnBOnA+𝑜BA=x|bBx=A+𝑜b