Metamath Proof Explorer


Theorem obsne0

Description: A basis element is nonzero. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypothesis obsocv.z 0˙=0W
Assertion obsne0 BOBasisWABA0˙

Proof

Step Hyp Ref Expression
1 obsocv.z 0˙=0W
2 obsrcl BOBasisWWPreHil
3 phllvec WPreHilWLVec
4 eqid ScalarW=ScalarW
5 4 lvecdrng WLVecScalarWDivRing
6 2 3 5 3syl BOBasisWScalarWDivRing
7 6 adantr BOBasisWABScalarWDivRing
8 eqid 0ScalarW=0ScalarW
9 eqid 1ScalarW=1ScalarW
10 8 9 drngunz ScalarWDivRing1ScalarW0ScalarW
11 7 10 syl BOBasisWAB1ScalarW0ScalarW
12 eqid 𝑖W=𝑖W
13 12 4 9 obsipid BOBasisWABA𝑖WA=1ScalarW
14 13 eqeq1d BOBasisWABA𝑖WA=0ScalarW1ScalarW=0ScalarW
15 eqid BaseW=BaseW
16 15 obsss BOBasisWBBaseW
17 16 sselda BOBasisWABABaseW
18 4 12 15 8 1 ipeq0 WPreHilABaseWA𝑖WA=0ScalarWA=0˙
19 2 17 18 syl2an2r BOBasisWABA𝑖WA=0ScalarWA=0˙
20 14 19 bitr3d BOBasisWAB1ScalarW=0ScalarWA=0˙
21 20 necon3bid BOBasisWAB1ScalarW0ScalarWA0˙
22 11 21 mpbid BOBasisWABA0˙