Metamath Proof Explorer


Theorem ocvin

Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses ocv2ss.o ˙=ocvW
ocvin.l L=LSubSpW
ocvin.z 0˙=0W
Assertion ocvin WPreHilSLS˙S=0˙

Proof

Step Hyp Ref Expression
1 ocv2ss.o ˙=ocvW
2 ocvin.l L=LSubSpW
3 ocvin.z 0˙=0W
4 eqid BaseW=BaseW
5 eqid 𝑖W=𝑖W
6 eqid ScalarW=ScalarW
7 eqid 0ScalarW=0ScalarW
8 4 5 6 7 1 ocvi x˙SxSx𝑖Wx=0ScalarW
9 8 ancoms xSx˙Sx𝑖Wx=0ScalarW
10 9 adantl WPreHilSLxSx˙Sx𝑖Wx=0ScalarW
11 simpll WPreHilSLxSx˙SWPreHil
12 4 2 lssel SLxSxBaseW
13 12 ad2ant2lr WPreHilSLxSx˙SxBaseW
14 6 5 4 7 3 ipeq0 WPreHilxBaseWx𝑖Wx=0ScalarWx=0˙
15 11 13 14 syl2anc WPreHilSLxSx˙Sx𝑖Wx=0ScalarWx=0˙
16 10 15 mpbid WPreHilSLxSx˙Sx=0˙
17 16 ex WPreHilSLxSx˙Sx=0˙
18 elin xS˙SxSx˙S
19 velsn x0˙x=0˙
20 17 18 19 3imtr4g WPreHilSLxS˙Sx0˙
21 20 ssrdv WPreHilSLS˙S0˙
22 phllmod WPreHilWLMod
23 4 2 lssss SLSBaseW
24 4 1 2 ocvlss WPreHilSBaseW˙SL
25 23 24 sylan2 WPreHilSL˙SL
26 2 lssincl WLModSL˙SLS˙SL
27 22 26 syl3an1 WPreHilSL˙SLS˙SL
28 25 27 mpd3an3 WPreHilSLS˙SL
29 3 2 lss0ss WLModS˙SL0˙S˙S
30 22 28 29 syl2an2r WPreHilSL0˙S˙S
31 21 30 eqssd WPreHilSLS˙S=0˙