Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ocv2ss.o | |
|
ocvin.l | |
||
ocvin.z | |
||
Assertion | ocvin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocv2ss.o | |
|
2 | ocvin.l | |
|
3 | ocvin.z | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 4 5 6 7 1 | ocvi | |
9 | 8 | ancoms | |
10 | 9 | adantl | |
11 | simpll | |
|
12 | 4 2 | lssel | |
13 | 12 | ad2ant2lr | |
14 | 6 5 4 7 3 | ipeq0 | |
15 | 11 13 14 | syl2anc | |
16 | 10 15 | mpbid | |
17 | 16 | ex | |
18 | elin | |
|
19 | velsn | |
|
20 | 17 18 19 | 3imtr4g | |
21 | 20 | ssrdv | |
22 | phllmod | |
|
23 | 4 2 | lssss | |
24 | 4 1 2 | ocvlss | |
25 | 23 24 | sylan2 | |
26 | 2 | lssincl | |
27 | 22 26 | syl3an1 | |
28 | 25 27 | mpd3an3 | |
29 | 3 2 | lss0ss | |
30 | 22 28 29 | syl2an2r | |
31 | 21 30 | eqssd | |