Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
|
2 |
|
prstcnid.k |
|
3 |
|
oduoppcbas.d |
|
4 |
|
oduoppcbas.o |
|
5 |
|
oduoppcciso.u |
|
6 |
|
oduoppcciso.d |
|
7 |
|
oduoppcciso.o |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
13
|
oduprs |
|
15 |
2 14
|
syl |
|
16 |
3 15
|
prstcthin |
|
17 |
1 2
|
prstcthin |
|
18 |
4
|
oppcthin |
|
19 |
17 18
|
syl |
|
20 |
|
f1oi |
|
21 |
1 2 3 4
|
oduoppcbas |
|
22 |
21
|
f1oeq3d |
|
23 |
20 22
|
mpbii |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
13 24 25
|
oduleg |
|
27 |
26
|
adantl |
|
28 |
3
|
adantr |
|
29 |
2
|
adantr |
|
30 |
29 14
|
syl |
|
31 |
|
eqidd |
|
32 |
28 30 31
|
prstcleval |
|
33 |
|
eqidd |
|
34 |
|
simprl |
|
35 |
|
simprr |
|
36 |
28 30 32 33 34 35
|
prstchom |
|
37 |
1
|
adantr |
|
38 |
|
eqidd |
|
39 |
37 29 38
|
prstcleval |
|
40 |
|
eqidd |
|
41 |
|
eqid |
|
42 |
4 41
|
oppcbas |
|
43 |
21 42
|
eqtr4di |
|
44 |
43
|
adantr |
|
45 |
35 44
|
eleqtrd |
|
46 |
34 44
|
eleqtrd |
|
47 |
37 29 39 40 45 46
|
prstchom |
|
48 |
27 36 47
|
3bitr3d |
|
49 |
48
|
necon4bid |
|
50 |
|
fvresi |
|
51 |
50
|
ad2antrl |
|
52 |
|
fvresi |
|
53 |
52
|
ad2antll |
|
54 |
51 53
|
oveq12d |
|
55 |
|
eqid |
|
56 |
55 4
|
oppchom |
|
57 |
54 56
|
eqtrdi |
|
58 |
57
|
eqeq1d |
|
59 |
49 58
|
bitr4d |
|
60 |
8 9 10 11 12 5 6 7 16 19 23 59
|
thinccisod |
|