| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prstcnid.c |
|
| 2 |
|
prstcnid.k |
|
| 3 |
|
oduoppcbas.d |
|
| 4 |
|
oduoppcbas.o |
|
| 5 |
|
oduoppcciso.u |
|
| 6 |
|
oduoppcciso.d |
|
| 7 |
|
oduoppcciso.o |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
13
|
oduprs |
|
| 15 |
2 14
|
syl |
|
| 16 |
3 15
|
prstcthin |
|
| 17 |
1 2
|
prstcthin |
|
| 18 |
4
|
oppcthin |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
f1oi |
|
| 21 |
1 2 3 4
|
oduoppcbas |
|
| 22 |
21
|
f1oeq3d |
|
| 23 |
20 22
|
mpbii |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
13 24 25
|
oduleg |
|
| 27 |
26
|
adantl |
|
| 28 |
3
|
adantr |
|
| 29 |
2
|
adantr |
|
| 30 |
29 14
|
syl |
|
| 31 |
|
eqidd |
|
| 32 |
28 30 31
|
prstcleval |
|
| 33 |
|
eqidd |
|
| 34 |
|
simprl |
|
| 35 |
|
simprr |
|
| 36 |
28 30 32 33 34 35
|
prstchom |
|
| 37 |
1
|
adantr |
|
| 38 |
|
eqidd |
|
| 39 |
37 29 38
|
prstcleval |
|
| 40 |
|
eqidd |
|
| 41 |
|
eqid |
|
| 42 |
4 41
|
oppcbas |
|
| 43 |
21 42
|
eqtr4di |
|
| 44 |
43
|
adantr |
|
| 45 |
35 44
|
eleqtrd |
|
| 46 |
34 44
|
eleqtrd |
|
| 47 |
37 29 39 40 45 46
|
prstchom |
|
| 48 |
27 36 47
|
3bitr3d |
|
| 49 |
48
|
necon4bid |
|
| 50 |
|
fvresi |
|
| 51 |
50
|
ad2antrl |
|
| 52 |
|
fvresi |
|
| 53 |
52
|
ad2antll |
|
| 54 |
51 53
|
oveq12d |
|
| 55 |
|
eqid |
|
| 56 |
55 4
|
oppchom |
|
| 57 |
54 56
|
eqtrdi |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
49 58
|
bitr4d |
|
| 60 |
8 9 10 11 12 5 6 7 16 19 23 59
|
thinccisod |
|